IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i1p66-82.html
   My bibliography  Save this article

Dynamics of final sectoral energy demand and aggregate energy intensity

Author

Listed:
  • Lescaroux, François

Abstract

This paper proposes a regional and sectoral model of global final energy demand. For the main end-use sectors of consumption (industrial, commercial and public services, residential and road transportation), per-capita demand is expressed as an S-shaped function of per-capita income. Other variables intervene as well, like energy prices, temperatures and technological trends. This model is applied on a panel of 101 countries and 3 aggregates (covering the whole world) and it explains fairly well past variations in sectoral, final consumption since the beginning of the 2000s. Further, the model is used to analyze the dynamics of final energy demand, by sector and in total. The main conclusion concerns the pattern of change for aggregate energy intensity. The simulations performed show that there is no a priori reason for it to exhibit a bell-shape, as reported in the literature. Depending on initial conditions, the weight of basic needs in total consumption and the availability of modern commercial energy resources, various forms might emerge.

Suggested Citation

  • Lescaroux, François, 2011. "Dynamics of final sectoral energy demand and aggregate energy intensity," Energy Policy, Elsevier, vol. 39(1), pages 66-82, January.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:66-82
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00690-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adeyemi, Olutomi I. & Hunt, Lester C., 2007. "Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change," Energy Economics, Elsevier, vol. 29(4), pages 693-709, July.
    2. Francois Lescaroux & Olivier Rech, 2008. "The Impact of Automobile Diffusion on the Income Elasticity of Motor Fuel Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 41-60.
    3. Dargay, Joyce & Gately, Dermot, 1997. "Vehicle ownership to 2015: Implications for energy use and emissions," Energy Policy, Elsevier, vol. 25(14-15), pages 1121-1127, December.
    4. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    5. François Lescaroux, 2010. "Car Ownership in Relation to Income Distribution and Consumers' Spending Decisions," Journal of Transport Economics and Policy, University of Bath, vol. 44(2), pages 207-230, May.
    6. Xavier Labandeira & José M. Labeaga & Miguel Rodríguez, 2006. "A Residential Energy Demand System for Spain," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 87-112.
    7. Agnolucci, Paolo, 2009. "The energy demand in the British and German industrial sectors: Heterogeneity and common factors," Energy Economics, Elsevier, vol. 31(1), pages 175-187, January.
    8. Pierre Villa, 2000. "Evolution sur longue periode de l’intensite energetique," Economie Internationale, CEPII research center, issue 82, pages 167-200.
    9. Storchmann, Karl, 2005. "Long-Run Gasoline demand for passenger cars: the role of income distribution," Energy Economics, Elsevier, vol. 27(1), pages 25-58, January.
    10. Halicioglu, Ferda, 2007. "Residential electricity demand dynamics in Turkey," Energy Economics, Elsevier, vol. 29(2), pages 199-210, March.
    11. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    12. Dargay, Joyce & Gately, Dermot, 1999. "Income's effect on car and vehicle ownership, worldwide: 1960-2015," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 101-138, February.
    13. Barro, Robert J, 2000. "Inequality and Growth in a Panel of Countries," Journal of Economic Growth, Springer, vol. 5(1), pages 5-32, March.
    14. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
    15. Rossana Galli, 1998. "The Relationship Between Energy Intensity and Income Levels: Forecasting Long Term Energy Demand in Asian Emerging Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 85-105.
    16. Ruth A. Judson & Richard Schmalensee & Thomas M. Stoker, 1999. "Economic Development and the Structure of the Demand for Commercial Energy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 29-57.
    17. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    18. Storchmann, Karl, 2005. "Erratum to "Long-run gasoline demand for passenger cars: The role of income distribution" [Energy Economics, 27 (1), 25-58]," Energy Economics, Elsevier, vol. 27(4), pages 687-687, July.
    19. Roger Fouquet & Peter J.G. Pearson, 2006. "Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 139-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sierra, Jaime Cevallos, 2016. "Estimating road transport fuel consumption in Ecuador," Energy Policy, Elsevier, vol. 92(C), pages 359-368.
    2. Jiang, Wei & Li, Xitao & Liu, Ruoxi & Song, Yijia, 2022. "Local fiscal pressure, policy distortion and energy efficiency: Micro-evidence from a quasi-natural experiment in China," Energy, Elsevier, vol. 254(PB).
    3. Zhu, Bangzhu & Ye, Shunxin & Jiang, Minxing & Wang, Ping & Wu, Zhanchi & Xie, Rui & Chevallier, Julien & Wei, Yi-Ming, 2019. "Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach," Applied Energy, Elsevier, vol. 233, pages 196-207.
    4. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    5. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Stern, David I., 2012. "Modeling international trends in energy efficiency," Energy Economics, Elsevier, vol. 34(6), pages 2200-2208.
    7. Mahumane, Gilberto & Mulder, Peter, 2016. "Introducing MOZLEAP: An integrated long-run scenario model of the emerging energy sector of Mozambique," Energy Economics, Elsevier, vol. 59(C), pages 275-289.
    8. Yoosoon Chang & Yongok Choi & Chang Sik Kim & J. Isaac Miller & Joon Y. Park, 2024. "Common Trends and Country Specific Heterogeneities in Long-Run World Energy Consumption," CAEPR Working Papers 2024-001 Classification-1, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    9. Zhou, Sheng & Kyle, G. Page & Yu, Sha & Clarke, Leon E. & Eom, Jiyong & Luckow, Patrick & Chaturvedi, Vaibhav & Zhang, Xiliang & Edmonds, James A., 2013. "Energy use and CO2 emissions of China's industrial sector from a global perspective," Energy Policy, Elsevier, vol. 58(C), pages 284-294.
    10. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
    11. Fotis, Panagiotis & Karkalakos, Sotiris & Asteriou, Dimitrios, 2017. "The relationship between energy demand and real GDP growth rate: The role of price asymmetries and spatial externalities within 34 countries across the globe," Energy Economics, Elsevier, vol. 66(C), pages 69-84.
    12. Shemelis Kebede Hundie & Megersa Debela Daksa, 2019. "Does energy-environmental Kuznets curve hold for Ethiopia? The relationship between energy intensity and economic growth," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-21, December.
    13. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
    14. Mahumane, Gilberto & Mulder, Peter, 2015. "Mozambique Energy Outlook, 2015-2030. Data, scenarios and policy implications," MPRA Paper 65968, University Library of Munich, Germany.
    15. Indranarain Ramlall, 2012. "Modelling Non-Renewable Energy in Mauritius: In Quest for Sustainable Policies towards a Greener Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 2(3), pages 123-133.
    16. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
    17. Suharno Suharno & Nurul Anwar, 2022. "The Energy Demand Elasticity in Relation to Gross Domestic Product in Indonesia: Sectoral Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 634-640, July.
    18. Bismark Ameyaw & Li Yao, 2018. "Sectoral Energy Demand Forecasting under an Assumption-Free Data-Driven Technique," Sustainability, MDPI, vol. 10(7), pages 1-20, July.
    19. Kim, Kayoung & Nam, Heekoo & Cho, Youngsang, 2015. "Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea," Energy Policy, Elsevier, vol. 76(C), pages 76-86.
    20. Richard S. J. Tol & Sebastian Petrick & Katrin Rehdanz, 2012. "The Impact of Temperature Changes on Residential Energy Use," Working Paper Series 4412, Department of Economics, University of Sussex Business School.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott, K. Rebecca, 2015. "Demand and price uncertainty: Rational habits in international gasoline demand," Energy, Elsevier, vol. 79(C), pages 40-49.
    2. Fedoseeva, Svetlana & Zeidan, Rodrigo, 2018. "How (a)symmetric is the response of import demand to changes in its determinants? Evidence from European energy imports," Energy Economics, Elsevier, vol. 69(C), pages 379-394.
    3. Franco Ruzzenenti & Andreas A. Papandreou, 2015. "Effects of fossil fuel prices on the transition to a low-carbon economy," Working papers wpaper89, Financialisation, Economy, Society & Sustainable Development (FESSUD) Project.
    4. Pedregal, D.J. & Dejuán, O. & Gómez, N. & Tobarra, M.A., 2009. "Modelling demand for crude oil products in Spain," Energy Policy, Elsevier, vol. 37(11), pages 4417-4427, November.
    5. Scott, K. Rebecca, 2011. "Demand and Price Volatility: Rational Habits in International Gasoline Demand," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2q87432b, Department of Agricultural & Resource Economics, UC Berkeley.
    6. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
    7. Pereira Uhr, Daniel de Abreu & Squarize Chagas, André Luis & Ziero Uhr, Júlia Gallego, 2019. "Estimation of elasticities for electricity demand in Brazilian households and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 69-79.
    8. Singh, Shivendu Shekhar & Sarkar, Basudatta, 2022. "Transport accessibility and affordability as the determinant of non-motorized commuting in rural India," Transport Policy, Elsevier, vol. 118(C), pages 101-111.
    9. Strand, Jon, 2013. "Political economy aspects of fuel subsidies : a conceptual framework," Policy Research Working Paper Series 6392, The World Bank.
    10. Ding, Yanjun & Shen, Wei & Yang, Shuhong & Han, Weijian & Chai, Qinhu, 2013. "Car dieselization: A solution to China's energy security?," Energy Policy, Elsevier, vol. 62(C), pages 540-549.
    11. Lin Ma & Manhua Wu & Xiujuan Tian & Guanheng Zheng & Qinchuan Du & Tian Wu, 2019. "China’s Provincial Vehicle Ownership Forecast and Analysis of the Causes Influencing the Trend," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    12. Javier Aliaga Lordemann & Alejandra Terán Orsini, 2020. "Vehicle fleets path and non-linear ownership elasticity for Bolivia, 2000-2035," Development Research Working Paper Series 04/2020, Institute for Advanced Development Studies.
    13. Moshiri, Saeed & Martinez Santillan, Miguel Alfonso, 2018. "The welfare effects of energy price changes due to energy market reform in Mexico," Energy Policy, Elsevier, vol. 113(C), pages 663-672.
    14. Keshavarzian, Maryam & Kamali Anaraki, Sara & Zamani, Mehrzad & Erfanifard, Ali, 2012. "Projections of oil demand in road transportation sector on the basis of vehicle ownership projections, worldwide: 1972–2020," Economic Modelling, Elsevier, vol. 29(5), pages 1979-1985.
    15. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    16. Yoosoon Chang & Chang Sik Kim & J. Isaac Miller & Joon Y. Park & Sungkeun Park, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand," Working Papers 1409, Department of Economics, University of Missouri.
    17. Altinay, Galip, 2007. "Short-run and long-run elasticities of import demand for crude oil in Turkey," Energy Policy, Elsevier, vol. 35(11), pages 5829-5835, November.
    18. Roger Fouquet, 2015. "Lessons from energy history for climate policy," GRI Working Papers 209, Grantham Research Institute on Climate Change and the Environment.
    19. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    20. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:66-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.