IDEAS home Printed from https://ideas.repec.org/p/zbw/hwwirp/142.html
   My bibliography  Save this paper

Regional diversity in the costs of electricity outages: Results for German counties

Author

Listed:
  • Piaszeck, Simon
  • Wenzel, Lars
  • Wolf, André

Abstract

The aim of this study is to quantify the macroeconomic costs resulting from a one hour power outage at the level of German counties. This is done by combining public data from various sources based on a well-established methodology, which both accounts for production losses of firms and losses in well-being of consumers. As a main result, we identify a North-South divide in the vulnerability of German counties, with counties in southern Germany tending to face larger losses. At the same time, considerable heterogeneity can also be found in small-scale comparisons, confirming the need for a spatially disaggregated analysis. We discuss the implications of our results for the debate on network expansion in Germany, suggesting that a stronger focus on outage costs could represent an important step towards a real cost-benefit analysis of expansion projects.

Suggested Citation

  • Piaszeck, Simon & Wenzel, Lars & Wolf, André, 2013. "Regional diversity in the costs of electricity outages: Results for German counties," HWWI Research Papers 142, Hamburg Institute of International Economics (HWWI).
  • Handle: RePEc:zbw:hwwirp:142
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/83646/1/769531709.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Carlsson, Fredrik & Martinsson, Peter, 2008. "Does it matter when a power outage occurs? -- A choice experiment study on the willingness to pay to avoid power outages," Energy Economics, Elsevier, vol. 30(3), pages 1232-1245, May.
    2. Benjamin Bental & S. Abraham Ravid, 1982. "A Simple Method for Evaluating the Marginal Cost of Unsupplied Electricity," Bell Journal of Economics, The RAND Corporation, vol. 13(1), pages 249-253, Spring.
    3. Adam Rose & Gbadebo Oladosu & Shu‐Yi Liao, 2007. "Business Interruption Impacts of a Terrorist Attack on the Electric Power System of Los Angeles: Customer Resilience to a Total Blackout," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 513-531, June.
    4. Beenstock, Michael & Goldin, Ephraim & Haitovsky, Yoel, 1998. "Response bias in a conjoint analysis of power outages," Energy Economics, Elsevier, vol. 20(2), pages 135-156, April.
    5. Tishler, Asher, 1993. "Optimal production with uncertain interruptions in the supply of electricity : Estimation of electricity outage costs," European Economic Review, Elsevier, vol. 37(6), pages 1259-1274, August.
    6. Wenzel, Lars & Wolf, André, 2013. "Protection against major catastrophes: An economic perspective," HWWI Research Papers 137, Hamburg Institute of International Economics (HWWI).
    7. Leahy, Eimear & Tol, Richard S.J., 2011. "An estimate of the value of lost load for Ireland," Energy Policy, Elsevier, vol. 39(3), pages 1514-1520, March.
    8. Sanghvi, Arun P., 1982. "Economic costs of electricity supply interruptions : US and foreign experience," Energy Economics, Elsevier, vol. 4(3), pages 180-198, July.
    9. Christian Growitsch & Raimund Malischek & Sebastian Nick & Heike Wetzel, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, Verein für Socialpolitik, vol. 16(3), pages 307-323, August.
    10. Linares, Pedro & Rey, Luis, 2013. "The costs of electricity interruptions in Spain. Are we sending the right signals?," Energy Policy, Elsevier, vol. 61(C), pages 751-760.
    11. de Nooij, Michiel & Lieshout, Rogier & Koopmans, Carl, 2009. "Optimal blackouts: Empirical results on reducing the social cost of electricity outages through efficient regional rationing," Energy Economics, Elsevier, vol. 31(3), pages 342-347, May.
    12. Michael J. Doane & Raymand S. Hartman & Chi-Keung Woo, 1988. "Household Preference for Interruptible Rate Options and the Revealed Value of Service Reliability," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 121-134.
    13. Mohan Munasinghe & Mark Gellerson, 1979. "Economic Criteria for Optimizing Power System Reliability Levels," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 353-365, Spring.
    14. de Nooij, Michiel & Koopmans, Carl & Bijvoet, Carlijn, 2007. "The value of supply security: The costs of power interruptions: Economic input for damage reduction and investment in networks," Energy Economics, Elsevier, vol. 29(2), pages 277-295, March.
    15. Brown, Gardner, Jr & Johnson, M Bruce, 1969. "Public Utility Pricing and Output under Risk," American Economic Review, American Economic Association, vol. 59(1), pages 119-128, March.
    16. Richard S.J. Tol, 2007. "The Value of Lost Load," Papers WP214, Economic and Social Research Institute (ESRI).
    17. Serra, Pablo & Fierro, Gabriel, 1997. "Outage costs in Chilean industry," Energy Economics, Elsevier, vol. 19(4), pages 417-434, October.
    18. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    19. Reichl, Johannes & Schmidthaler, Michael & Schneider, Friedrich, 2013. "The value of supply security: The costs of power outages to Austrian households, firms and the public sector," Energy Economics, Elsevier, vol. 36(C), pages 256-261.
    20. Beenstock, Michael, 1991. "Generators and the cost of electricity outages," Energy Economics, Elsevier, vol. 13(4), pages 283-289, October.
    21. Christian Growitsch & Raimund Malischek & Sebastian Nick & Heike Wetzel, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, Verein für Socialpolitik, vol. 16(3), pages 307-323, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poppen, Silvia, 2014. "Auswirkungen dezentraler Erzeugungsanlagen auf das Stromversorgungssystem: Ausgestaltungsmöglichkeiten der Bereitstellung neuer Erzeugungsanlagen," Arbeitspapiere 146, University of Münster, Institute for Cooperatives.
    2. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics.
    3. Julian S. Leppin & Stefan Reitz, 2016. "The Role of a Changing Market Environment for Credit Default Swap Pricing," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(3), pages 209-223, July.
    4. Rahmatallah Poudineh and Tooraj Jamasb, 2017. "Electricity Supply Interruptions: Sectoral Interdependencies and the Cost of Energy Not Served for the Scottish Economy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    5. Thomas, Douglas & Fung, Juan, 2022. "Measuring downstream supply chain losses due to power disturbances," Energy Economics, Elsevier, vol. 114(C).
    6. Frondel Manuel & Sommer Stephan, 2017. "Der Wert von Versorgungssicherheit mit Strom: Evidenz für deutsche Haushalte," Zeitschrift für Wirtschaftspolitik, De Gruyter, vol. 66(3), pages 294-317, December.
    7. Paul Nduhuura & Matthias Garschagen & Abdellatif Zerga, 2021. "Impacts of Electricity Outages in Urban Households in Developing Countries: A Case of Accra, Ghana," Energies, MDPI, vol. 14(12), pages 1-26, June.
    8. Bräuninger, Michael, 2014. "Tax sovereignty and feasibility of international regulations for tobacco tax policies," HWWI Research Papers 152, Hamburg Institute of International Economics (HWWI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolf, André & Wenzel, Lars, 2015. "Welfare implications of power rationing: An application to Germany," Energy, Elsevier, vol. 84(C), pages 53-62.
    2. Botelho, Vinícius, 2019. "Estimating the economic impacts of power supply interruptions," Energy Economics, Elsevier, vol. 80(C), pages 983-994.
    3. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
    4. Mubashir Qasim & Koji Kotani, 2014. "An empirical analysis of energy shortage in Pakistan," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 21(1), pages 137-166, June.
    5. Landegren, Finn & Johansson, Jonas & Samuelsson, Olof, 2019. "Quality of supply regulations versus societal priorities regarding electricity outage consequences: Case study in a Swedish context," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    6. Richard S. J. Tol, 2023. "Navigating the energy trilemma during geopolitical and environmental crises," Papers 2301.07671, arXiv.org.
    7. Majid Hashemi & Glenn P. Jenkins & Roop Jyoti & Aygul Ozbafli, 2018. "Evaluating the Cost to Industry of Electricity Outages," Development Discussion Papers 2018-14, JDI Executive Programs.
    8. Alastaire S na ALINSATO, 2015. "Economic Valuation of Electrical Service Reliability for Households in Developing Country: A Censored Random Coefficient Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 352-359.
    9. Röpke, Luise, 2013. "The development of renewable energies and supply security: A trade-off analysis," Energy Policy, Elsevier, vol. 61(C), pages 1011-1021.
    10. Musiliu 0. Oseni & Michael G. Pollitt, 2013. "The Economic Costs of Unsupplied Electricty: Evidence from Backup Generation among African Firms," Cambridge Working Papers in Economics 1351, Faculty of Economics, University of Cambridge.
    11. de Nooij, Michiel & Baarsma, Barbara & Bloemhof, Gabriël & Slootweg, Han & Dijk, Harold, 2010. "Development and application of a cost-benefit framework for energy reliability: Using probabilistic methods in network planning and regulation to enhance social welfare: The N-1 rule," Energy Economics, Elsevier, vol. 32(6), pages 1277-1282, November.
    12. Abrate, Graziano & Bruno, Clementina & Erbetta, Fabrizio & Fraquelli, Giovanni & Lorite-Espejo, Azahara, 2016. "A choice experiment on the willingness of households to accept power outages," Utilities Policy, Elsevier, vol. 43(PB), pages 151-164.
    13. Marcos Perroni & Luciano Luiz Dalazen & Wesley Vieira da Silva & Sergio Eduardo Gouv a da Costa & Claudimar Pereira da Veiga, 2015. "Evolution of Risks for Energy Companies from the Energy Efficiency Perspective: The Brazilian Case," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 612-623.
    14. Serra, Pablo & Fierro, Gabriel, 1997. "Outage costs in Chilean industry," Energy Economics, Elsevier, vol. 19(4), pages 417-434, October.
    15. Luise Röpke, 2015. "Essays on the Integration of New Energy Sources into Existing Energy Systems," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 58.
    16. Castro, Rui & Faias, Sérgio & Esteves, Jorge, 2016. "The cost of electricity interruptions in Portugal: Valuing lost load by applying the production-function approach," Utilities Policy, Elsevier, vol. 40(C), pages 48-57.
    17. Minnaar, U.J. & Visser, W. & Crafford, J., 2017. "An economic model for the cost of electricity service interruption in South Africa," Utilities Policy, Elsevier, vol. 48(C), pages 41-50.
    18. Kim, Kayoung & Nam, Heekoo & Cho, Youngsang, 2015. "Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea," Energy Policy, Elsevier, vol. 76(C), pages 76-86.
    19. Motz, Alessandra, 2021. "Security of supply and the energy transition: The households' perspective investigated through a discrete choice model with latent classes," Energy Economics, Elsevier, vol. 97(C).
    20. Clementina Bruno & Ugo Finardi & Azahara Lorite-Espejo & Elena Ragazzi, 2016. "Emerging costs deriving from blackouts for individual firms: evidence from an Italian case study," quaderni IRCrES 201601, CNR-IRCrES Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY - former Institute for Economic Research on Firms and Growth - Torino (TO) ITALY.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hwwirp:142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/hwwiide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.