IDEAS home Printed from https://ideas.repec.org/a/eee/streco/v18y2007i3p291-305.html
   My bibliography  Save this article

The energy-capital relation--Sweden 1870-2000

Author

Listed:
  • Kander, Astrid
  • Schon, Lennart

Abstract

No abstract is available for this item.

Suggested Citation

  • Kander, Astrid & Schon, Lennart, 2007. "The energy-capital relation--Sweden 1870-2000," Structural Change and Economic Dynamics, Elsevier, vol. 18(3), pages 291-305, September.
  • Handle: RePEc:eee:streco:v:18:y:2007:i:3:p:291-305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0954-349X(07)00016-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    2. Solow, Robert M, 1988. "Growth Theory and After," American Economic Review, American Economic Association, vol. 78(3), pages 307-317, June.
    3. Warr, Benjamin & Ayres, Robert, 2006. "REXS: A forecasting model for assessing the impact of natural resource consumption and technological change on economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 17(3), pages 329-378, September.
    4. Hesse, Dieter M & Tarkka, Helena, 1986. " The Demand for Capital, Labor and Energy in European Manufacturing Industry before and after the Oil Price Shocks," Scandinavian Journal of Economics, Wiley Blackwell, vol. 88(3), pages 529-546.
    5. Apostolakis, Bobby E., 1990. "Energy--capital substitutability/ complementarity : The dichotomy," Energy Economics, Elsevier, vol. 12(1), pages 48-58, January.
    6. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    7. Jorgenson, Dale W, 1984. "The Role of Energy in Productivity Growth," American Economic Review, American Economic Association, vol. 74(2), pages 26-30, May.
    8. Ayres, Robert U & Ayres, Leslie W & Warr, Benjamin, 2003. "Exergy, power and work in the US economy, 1900–1998," Energy, Elsevier, vol. 28(3), pages 219-273.
    9. Gale A. Boyd & Stephen H. Karlson, 1993. "The Impact of Energy Prices on Technology Choice in the United States Steel Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 47-56.
    10. Manuel Frondel & Christoph M. Schmidt, 2002. "The Capital-Energy Controversy: An Artifact of Cost Shares?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 53-79.
    11. Lundmark, Robert & Soderholm, Patrik, 2004. "Estimating and decomposing the rate of technical change in the Swedish pulp and paper industry: A general index approach," International Journal of Production Economics, Elsevier, vol. 91(1), pages 17-35, September.
    12. Ernst Berndt & Charles Kolstad & Jong-Kun Lee, 1993. "Measuring the Energy Efficiency and Productivity Impacts of Embodied Technical Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 33-56.
    13. Rosenberg, Nathan, 1972. "Factors affecting the diffusion of technology," Explorations in Economic History, Elsevier, vol. 10(1), pages 3-33.
    14. Ilmakunnas, P & Torma, H, 1994. "Energy Crises and Change of Technology," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(3), pages 305-320, July-Sept.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qunwei & Zhang, Cheng & Cai, Wanhuan, 2017. "Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis," Energy Policy, Elsevier, vol. 109(C), pages 181-190.
    2. Xinna Zhao & Chongwen Zhong, 2017. "Low Carbon Economy Performance Analysis with the Intertemporal Effect of Capital in China," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    3. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2018. "Useful Exergy Is Key in Obtaining Plausible Aggregate Production Functions and Recognizing the Role of Energy in Economic Growth: Portugal 1960–2009," Ecological Economics, Elsevier, vol. 148(C), pages 103-120.
    4. Hana Nielsen, 2016. "East versus West: Energy transition and energy intensity in coal-rich Europe, 1830-2000," Working Papers 16024, Economic History Society.
    5. Karl-Johan Lundquist & Lars-Olof Olander, 2011. "Growth Cycles -Transformation and regional development," ERSA conference papers ersa10p918, European Regional Science Association.
    6. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    7. Richters, Oliver & Siemoneit, Andreas, 2019. "Growth imperatives: Substantiating a contested concept," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 126-137.
    8. Lundquist, Karl-Johan & Olander, Lars-Olof, 2010. "Growth cycles: transformation and regional development," SRE-Discussion Papers 2010/04, WU Vienna University of Economics and Business.
    9. van Ruijven, Bas & de Vries, Bert & van Vuuren, Detlef P. & van der Sluijs, Jeroen P., 2010. "A global model for residential energy use: Uncertainty in calibration to regional data," Energy, Elsevier, vol. 35(1), pages 269-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    2. Halkos, George E. & Tzeremes, Nickolaos G., 2011. "Oil consumption and economic efficiency: A comparative analysis of advanced, developing and emerging economies," Ecological Economics, Elsevier, vol. 70(7), pages 1354-1362, May.
    3. Elena Ketteni & Theofanis Mamuneas & Panos Pashardes, 2013. "ICT and Energy Use: Patterns of Substitutability and Complementarity in Production," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 7(1), pages 63-86, June.
    4. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    5. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    6. Richard Green and Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    7. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    8. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    9. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    10. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    11. Warr, Benjamin & Schandl, Heinz & Ayres, Robert U., 2008. "Long term trends in resource exergy consumption and useful work supplies in the UK, 1900 to 2000," Ecological Economics, Elsevier, vol. 68(1-2), pages 126-140, December.
    12. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    13. Warr, Benjamin & Ayres, Robert & Eisenmenger, Nina & Krausmann, Fridolin & Schandl, Heinz, 2010. "Energy use and economic development: A comparative analysis of useful work supply in Austria, Japan, the United Kingdom and the US during 100Â years of economic growth," Ecological Economics, Elsevier, vol. 69(10), pages 1904-1917, August.
    14. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    15. Warr, Benjamin & Ayres, Robert U., 2012. "Useful work and information as drivers of economic growth," Ecological Economics, Elsevier, vol. 73(C), pages 93-102.
    16. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    17. Hana Nielsen, 2016. "East versus West: Energy transition and energy intensity in coal-rich Europe, 1830-2000," Working Papers 16024, Economic History Society.
    18. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2018. "Useful Exergy Is Key in Obtaining Plausible Aggregate Production Functions and Recognizing the Role of Energy in Economic Growth: Portugal 1960–2009," Ecological Economics, Elsevier, vol. 148(C), pages 103-120.
    19. Lindenberger, Dietmar & Kümmel, Reiner, 2011. "Energy and the state of nations," Energy, Elsevier, vol. 36(10), pages 6010-6018.
    20. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:streco:v:18:y:2007:i:3:p:291-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/525148 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.