IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p582-d74783.html
   My bibliography  Save this article

Design of a System Substituting Today’s Inherent Inertia in the European Continental Synchronous Area

Author

Listed:
  • Henning Thiesen

    (Wind Energy Technology Institute, Center for Sustainable Energy Systems Flensburg, Flensburg University of Applied Sciences, Flensburg 24943, Germany)

  • Clemens Jauch

    (Wind Energy Technology Institute, Center for Sustainable Energy Systems Flensburg, Flensburg University of Applied Sciences, Flensburg 24943, Germany)

  • Arne Gloe

    (Wind Energy Technology Institute, Center for Sustainable Energy Systems Flensburg, Flensburg University of Applied Sciences, Flensburg 24943, Germany)

Abstract

In alternating current (AC) power systems the power generated by power plants has to match the power drawn by consumers plus the system losses at any time. In the case of an imbalance between generation and consumption the frequency in the system deviates from its rated value. In order to avoid an unsuitable frequency, control power plants have to step in to level out this imbalance. Control power plants need time to adjust their power, which is why the inertial behaviour of today’s AC systems is crucial for frequency control. In this paper it is discussed that the inertia in the European Continental Synchronous Area decreases due to the transition to renewable energy sources. This will become a problem for frequency control, which is why the provision of non-inherent inertia is proposed. This system consists of fast-responding energy storage. Its dimensions in terms of power and energy are determined. Since such non-inherent inertia requires investments a cost-efficient solution has to be found. Different technologies are compared in terms of the newly-introduced levelised cost of inertia. This paper concludes with the proposal that in future inertia should be traded and with the recommendation to use flywheels for this purpose, as these are the most cost-efficient solution for this task.

Suggested Citation

  • Henning Thiesen & Clemens Jauch & Arne Gloe, 2016. "Design of a System Substituting Today’s Inherent Inertia in the European Continental Synchronous Area," Energies, MDPI, vol. 9(8), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:582-:d:74783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    2. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    3. de Nooij, Michiel & Koopmans, Carl & Bijvoet, Carlijn, 2007. "The value of supply security: The costs of power interruptions: Economic input for damage reduction and investment in networks," Energy Economics, Elsevier, vol. 29(2), pages 277-295, March.
    4. Leahy, Eimear & Tol, Richard S.J., 2011. "An estimate of the value of lost load for Ireland," Energy Policy, Elsevier, vol. 39(3), pages 1514-1520, March.
    5. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    6. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations," Energies, MDPI, vol. 9(3), pages 1-12, February.
    7. Growitsch Christian & Malischek Raimund & Nick Sebastian & Wetzel Heike, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, De Gruyter, vol. 16(3), pages 307-323, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henning Thiesen & Clemens Jauch, 2020. "Determining the Load Inertia Contribution from Different Power Consumer Groups," Energies, MDPI, vol. 13(7), pages 1-14, April.
    2. Fabio Bignucolo & Alberto Cerretti & Massimiliano Coppo & Andrea Savio & Roberto Turri, 2017. "Impact of Distributed Generation Grid Code Requirements on Islanding Detection in LV Networks," Energies, MDPI, vol. 10(2), pages 1-16, January.
    3. Andrey Rylov & Pavel Ilyushin & Aleksandr Kulikov & Konstantin Suslov, 2021. "Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions," Energies, MDPI, vol. 14(16), pages 1-20, August.
    4. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    5. Alija Mujcinagic & Mirza Kusljugic & Emir Nukic, 2020. "Wind Inertial Response Based on the Center of Inertia Frequency of a Control Area," Energies, MDPI, vol. 13(23), pages 1-17, November.
    6. Konstantinos Oureilidis & Kyriaki-Nefeli Malamaki & Konstantinos Gallos & Achilleas Tsitsimelis & Christos Dikaiakos & Spyros Gkavanoudis & Milos Cvetkovic & Juan Manuel Mauricio & Jose Maria Maza Ort, 2020. "Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers," Energies, MDPI, vol. 13(4), pages 1-44, February.
    7. Feng Wang & Lizheng Sun & Zhang Wen & Fang Zhuo, 2022. "Overview of Inertia Enhancement Methods in DC System," Energies, MDPI, vol. 15(18), pages 1-25, September.
    8. Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
    9. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Henning Thiesen & Clemens Jauch, 2021. "Application of a New Dispatch Methodology to Identify the Influence of Inertia Supplying Wind Turbines on Day-Ahead Market Sales Volumes," Energies, MDPI, vol. 14(5), pages 1-19, February.
    11. Lee, Rachel & Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2019. "A closed-loop analysis of grid scale battery systems providing frequency response and reserve services in a variable inertia grid," Applied Energy, Elsevier, vol. 236(C), pages 961-972.
    12. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Ullmark, Jonathan & Göransson, Lisa & Chen, Peiyuan & Bongiorno, Massimo & Johnsson, Filip, 2021. "Inclusion of frequency control constraints in energy system investment modeling," Renewable Energy, Elsevier, vol. 173(C), pages 249-262.
    14. Sohail Khan & Benoit Bletterie & Adolfo Anta & Wolfgang Gawlik, 2018. "On Small Signal Frequency Stability under Virtual Inertia and the Role of PLLs," Energies, MDPI, vol. 11(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolf, André & Wenzel, Lars, 2016. "Regional diversity in the costs of electricity outages: Results for German counties," Utilities Policy, Elsevier, vol. 43(PB), pages 195-205.
    2. Landegren, Finn & Johansson, Jonas & Samuelsson, Olof, 2019. "Quality of supply regulations versus societal priorities regarding electricity outage consequences: Case study in a Swedish context," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    3. Wolf, André & Wenzel, Lars, 2015. "Welfare implications of power rationing: An application to Germany," Energy, Elsevier, vol. 84(C), pages 53-62.
    4. Minnaar, U.J. & Visser, W. & Crafford, J., 2017. "An economic model for the cost of electricity service interruption in South Africa," Utilities Policy, Elsevier, vol. 48(C), pages 41-50.
    5. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
    6. Castro, Rui & Faias, Sérgio & Esteves, Jorge, 2016. "The cost of electricity interruptions in Portugal: Valuing lost load by applying the production-function approach," Utilities Policy, Elsevier, vol. 40(C), pages 48-57.
    7. Hagspiel, Simeon, 2017. "Reliable Electricity: The Effects of System Integration and Cooperative Measures to Make it Work," EWI Working Papers 2017-13, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    8. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    9. Alastaire S na ALINSATO, 2015. "Economic Valuation of Electrical Service Reliability for Households in Developing Country: A Censored Random Coefficient Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 352-359.
    10. Christian Growitsch & Raimund Malischek & Sebastian Nick & Heike Wetzel, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, Verein für Socialpolitik, vol. 16(3), pages 307-323, August.
    11. Timilsina, Govinda R., 2021. "Are renewable energy technologies cost competitive for electricity generation?," Renewable Energy, Elsevier, vol. 180(C), pages 658-672.
    12. Nissen, Ulrich & Harfst, Nathanael, 2019. "Shortcomings of the traditional “levelized cost of energy” [LCOE] for the determination of grid parity," Energy, Elsevier, vol. 171(C), pages 1009-1016.
    13. Lynch, Muireann Á. & Tol, Richard S.J. & O'Malley, Mark J., 2012. "Optimal interconnection and renewable targets for north-west Europe," Energy Policy, Elsevier, vol. 51(C), pages 605-617.
    14. Resch, Matthias & Bühler, Jochen & Klausen, Mira & Sumper, Andreas, 2017. "Impact of operation strategies of large scale battery systems on distribution grid planning in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1042-1063.
    15. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    16. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    17. Yuan, Jiahai & Sun, Shenghui & Zhang, Wenhua & Xiong, Minpeng, 2014. "The economy of distributed PV in China," Energy, Elsevier, vol. 78(C), pages 939-949.
    18. Wu, Kuei-Yen & Huang, Yun-Hsun & Wu, Jung-Hua, 2018. "Impact of electricity shortages during energy transitions in Taiwan," Energy, Elsevier, vol. 151(C), pages 622-632.
    19. Kim, Kayoung & Cho, Youngsang, 2017. "Estimation of power outage costs in the industrial sector of South Korea," Energy Policy, Elsevier, vol. 101(C), pages 236-245.
    20. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:582-:d:74783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.