IDEAS home Printed from https://ideas.repec.org/r/rje/bellje/v13y1982iautumnp297-310.html
   My bibliography  Save this item

Learning Effects and the Commercialization of New Energy Technologies: The Case of Nuclear Power

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
  2. C. Lanier Benkard, 2000. "Learning and Forgetting: The Dynamics of Aircraft Production," American Economic Review, American Economic Association, vol. 90(4), pages 1034-1054, September.
  3. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
  4. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E. & McJeon, Haewon C., 2015. "Long-term payoffs of near-term low-carbon deployment policies," Energy Policy, Elsevier, vol. 86(C), pages 493-505.
  5. David Besanko & Ulrich Doraszelski & Yaroslav Kryukov & Mark Satterthwaite, 2008. "Learning-by-Doing, Organizational Forgetting, and Industry Dynamics," GSIA Working Papers 2009-E22, Carnegie Mellon University, Tepper School of Business.
  6. Hultman, Nathan E. & Malone, Elizabeth L. & Runci, Paul & Carlock, Gregory & Anderson, Kate L., 2012. "Factors in low-carbon energy transformations: Comparing nuclear and bioenergy in Brazil, Sweden, and the United States," Energy Policy, Elsevier, vol. 40(C), pages 131-146.
  7. To, T.C., 1993. "Infant Industry Protection with Learning-by-Doing," Discussion Paper 1993-26, Tilburg University, Center for Economic Research.
  8. John R. Boyce & Diane P. Bischak, 2010. "Learning by Doing, Knowledge Spillovers, and Technological and Organizational Change in High-Altitude Mountaineering," Journal of Sports Economics, , vol. 11(5), pages 496-532, October.
  9. Desroches, Louis-Benoit & Garbesi, Karina & Kantner, Colleen & Van Buskirk, Robert & Yang, Hung-Chia, 2013. "Incorporating experience curves in appliance standards analysis," Energy Policy, Elsevier, vol. 52(C), pages 402-416.
  10. Emanuela Randon & Ahmad Naimzada, 2007. "Dynamics of the non linear learning curve with spillovers in a differentiated oligopoly: effects on industry structure," Journal of Evolutionary Economics, Springer, vol. 17(1), pages 95-106, February.
  11. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
  12. Anelí Bongers, 2017. "Learning and forgetting in the jet fighter aircraft industry," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
  13. Robert S. Huckman & Gary P. Pisano, 2003. "The Effect of Organizational Context on Individual Performance," NBER Working Papers 10027, National Bureau of Economic Research, Inc.
  14. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
  15. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
  16. Anelí Bongers, 2023. "Learning by doing, organizational forgetting, and the business cycle," Bulletin of Economic Research, Wiley Blackwell, vol. 75(1), pages 141-150, January.
  17. C. Lanier Benkard, 1999. "Learning and Forgetting: The Dynamics of Aircraft Production," NBER Working Papers 7127, National Bureau of Economic Research, Inc.
  18. Doraszelski, Ulrich & Besanko, David & Kryukov, Yaroslav, 2017. "How Efficient is Dynamic Competition? The Case of Price as Investment," CEPR Discussion Papers 12279, C.E.P.R. Discussion Papers.
  19. Harashima, Taiji, 2009. "A Theory of Total Factor Productivity and the Convergence Hypothesis: Workers’ Innovations as an Essential Element," MPRA Paper 15508, University Library of Munich, Germany.
  20. Joe L. Lane & Simon Smart & Diego Schmeda‐Lopez & Ove Hoegh‐Guldberg & Andrew Garnett & Chris Greig & Eric McFarland, 2016. "Understanding constraints to the transformation rate of global energy infrastructure," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 33-48, January.
  21. Francine Lafontaine & Kathryn Shaw, 2016. "Serial Entrepreneurship: Learning by Doing?," Journal of Labor Economics, University of Chicago Press, vol. 34(S2), pages 217-254.
  22. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending the learning curve," Energy Economics, Elsevier, vol. 52(S1), pages 86-99.
  23. Berthélemy, Michel & Escobar Rangel, Lina, 2015. "Nuclear reactors' construction costs: The role of lead-time, standardization and technological progress," Energy Policy, Elsevier, vol. 82(C), pages 118-130.
  24. Gagnon, Roger J. & Sheu, Chwen, 2000. "The impact of learning, forgetting and capacity profiles on the acquisition of advanced technology," Omega, Elsevier, vol. 28(1), pages 51-76, February.
  25. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
  26. Peter M. Madsen, 2009. "These Lives Will Not Be Lost in Vain: Organizational Learning from Disaster in U.S. Coal Mining," Organization Science, INFORMS, vol. 20(5), pages 861-875, October.
  27. Levin, Mark (Левин, Марк) & Matrosova, K. (Матросова, К.), 2016. "Research, Modeling and Process Management Dissemination of Innovations in Socio-Economic Systems [Исследование, Моделирование И Управление Процессами Распространения Инноваций В Социально-Экономиче," Working Papers 1443, Russian Presidential Academy of National Economy and Public Administration.
  28. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
  29. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
  30. George Ball & Enno Siemsen & Rachna Shah, 2017. "Do Plant Inspections Predict Future Quality? The Role of Investigator Experience," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 534-550, October.
  31. Irwin, Douglas A & Klenow, Peter J, 1994. "Learning-by-Doing Spillovers in the Semiconductor Industry," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1200-1227, December.
  32. C. Kirabo Jackson & Elias Bruegmann, 2009. "Teaching Students and Teaching Each Other: The Importance of Peer Learning for Teachers," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 85-108, October.
  33. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
  34. Olav Sorenson & Jan W. Rivkin & Lee Fleming, 2010. "Complexity, Networks and Knowledge Flows," Chapters, in: Ron Boschma & Ron Martin (ed.), The Handbook of Evolutionary Economic Geography, chapter 15, Edward Elgar Publishing.
  35. Greaker, Mads & Lund Sagen, Eirik, 2008. "Explaining experience curves for new energy technologies: A case study of liquefied natural gas," Energy Economics, Elsevier, vol. 30(6), pages 2899-2911, November.
  36. Joel A. C. Baum & Paul Ingram, 1998. "Survival-Enhancing Learning in the Manhattan Hotel Industry, 1898--1980," Management Science, INFORMS, vol. 44(7), pages 996-1016, July.
  37. Kim, Hansung & Lee, Hwarang & Koo, Yoonmo & Choi, Dong Gu, 2020. "Comparative analysis of iterative approaches for incorporating learning-by-doing into the energy system models," Energy, Elsevier, vol. 197(C).
  38. Lucas W. Davis, 2012. "Prospects for Nuclear Power," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 49-66, Winter.
  39. Saman Majd & Robert S. Pindyck, 1989. "The Learning Curve and Optimal Production under Uncertainty," RAND Journal of Economics, The RAND Corporation, vol. 20(3), pages 331-343, Autumn.
  40. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
  41. Matsuo, Yuhji & Nei, Hisanori, 2019. "An analysis of the historical trends in nuclear power plant construction costs: The Japanese experience," Energy Policy, Elsevier, vol. 124(C), pages 180-198.
  42. Nadeau, Marie-Claude & Kar, Ashish & Roth, Richard & Kirchain, Randolph, 2010. "A dynamic process-based cost modeling approach to understand learning effects in manufacturing," International Journal of Production Economics, Elsevier, vol. 128(1), pages 223-234, November.
  43. Doede Wiersma, 1991. "Static and dynamic efficiency of pollution control strategies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 1(1), pages 63-82, March.
  44. John Baffoe-Bonnie, 2016. "Productivity Growth and Input Demand: The Effect of Learning by Doing in a Gold Mining Firm in a Developing Economy," International Economic Journal, Taylor & Francis Journals, vol. 30(4), pages 550-570, October.
  45. Joel A. C. Baum & Kristina B. Dahlin, 2007. "Aspiration Performance and Railroads’ Patterns of Learning from Train Wrecks and Crashes," Organization Science, INFORMS, vol. 18(3), pages 368-385, June.
  46. Avner Ben-Ner & Stephanie Lluis, 2011. "Learning: What and How? An Empirical Study of Adjustments in Workplace Organization Structure," Industrial Relations: A Journal of Economy and Society, Wiley Blackwell, vol. 50(1), pages 76-108, January.
  47. Kahouli, Sondès, 2011. "Effects of technological learning and uranium price on nuclear cost: Preliminary insights from a multiple factors learning curve and uranium market modeling," Energy Economics, Elsevier, vol. 33(5), pages 840-852, September.
  48. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
  49. C. Lanier Benkard, 2000. "A Dynamic Analysis of the Market for Wide-Bodied Commercial Aircraft," NBER Working Papers 7710, National Bureau of Economic Research, Inc.
  50. David Besanko & Ulrich Doraszelski & Yaroslav Kryukov, 2017. "How Efficient is Dynamic Competition? The Case of Price as Investment," NBER Working Papers 23829, National Bureau of Economic Research, Inc.
  51. Ben Wealer & Simon Bauer & Leonard Göke & Christian von Hirschhausen & Claudia Kemfert, 2019. "Economics of Nuclear Power Plant Investment: Monte Carlo Simulations of Generation III/III+ Investment Projects," Discussion Papers of DIW Berlin 1833, DIW Berlin, German Institute for Economic Research.
  52. Darr, Eric D. & Kurtzberg, Terri R., 2000. "An Investigation of Partner Similarity Dimensions on Knowledge Transfer," Organizational Behavior and Human Decision Processes, Elsevier, vol. 82(1), pages 28-44, May.
  53. Wealer, B. & Bauer, S. & Hirschhausen, C.v. & Kemfert, C. & Göke, L., 2021. "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  54. Yuichiro Kamada & Fuhito Kojima, 2013. "Voter Preferences, Polarization, and Electoral Policies," Discussion Papers 12-021, Stanford Institute for Economic Policy Research.
  55. Li, Georgi & Rajagopalan, S., 1998. "A learning curve model with knowledge depreciation," European Journal of Operational Research, Elsevier, vol. 105(1), pages 143-154, February.
  56. Clarke, Leon & Weyant, John & Birky, Alicia, 2006. "On the sources of technological change: Assessing the evidence," Energy Economics, Elsevier, vol. 28(5-6), pages 579-595, November.
  57. Sirio Aramonte, 2015. "Innovation, investor sentiment, and firm-level experimentation," Finance and Economics Discussion Series 2015-67, Board of Governors of the Federal Reserve System (U.S.).
  58. Tombak, Mihkel M., 2006. "Strategic asymmetry," Journal of Economic Behavior & Organization, Elsevier, vol. 61(3), pages 339-350, November.
  59. John C. Dencker & Marc Gruber & Sonali K. Shah, 2009. "Pre-Entry Knowledge, Learning, and the Survival of New Firms," Organization Science, INFORMS, vol. 20(3), pages 516-537, June.
  60. Dismukes, David E. & Upton, Gregory B., 2015. "Economies of scale, learning effects and offshore wind development costs," Renewable Energy, Elsevier, vol. 83(C), pages 61-66.
  61. Della Seta, Marco & Gryglewicz, Sebastian & Kort, Peter M., 2012. "Optimal investment in learning-curve technologies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1462-1476.
  62. Harashima, Taiji, 2014. "Division of Work and Fragmented Information: An Explanation for the Diminishing Marginal Product of Labor," MPRA Paper 56301, University Library of Munich, Germany.
  63. Liu, An-Hsiang & Siebert, Ralph B., 2022. "The competitive effects of declining entry costs over time: Evidence from the static random access memory market," International Journal of Industrial Organization, Elsevier, vol. 80(C).
  64. Kessides, Ioannis N., 2012. "The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise," Energy Policy, Elsevier, vol. 48(C), pages 185-208.
  65. Iyer, Gokul & Hultman, Nathan & Fetter, Steve & Kim, Son H., 2014. "Implications of small modular reactors for climate change mitigation," Energy Economics, Elsevier, vol. 45(C), pages 144-154.
  66. Stephen Decanio, 1994. "Agency and Control Problems in US Corporations: The Case of Energy-efficient Investment Projects," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 1(1), pages 105-124.
  67. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
  68. Baffoe-Bonnie, John, 2004. "Learning-by-doing and input demand of a rate-of-return regulated firm," Economic Modelling, Elsevier, vol. 21(6), pages 1015-1037, December.
  69. Lina Escobar Rangel and Francois Leveque, 2015. "Revisiting the Cost Escalation Curse of Nuclear Power: New Lessons from the French Experience," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
  70. Hui Wen & George Deltas, 2022. "Global corporate social responsibility reporting regulation," Contemporary Economic Policy, Western Economic Association International, vol. 40(1), pages 98-123, January.
  71. Nile W. Hatch & David C. Mowery, 1998. "Process Innovation and Learning by Doing in Semiconductor Manufacturing," Management Science, INFORMS, vol. 44(11-Part-1), pages 1461-1477, November.
  72. Harashima, Taiji, 2011. "A Model of Total Factor Productivity Built on Hayek’s View of Knowledge: What Really Went Wrong with Socialist Planned Economies?," MPRA Paper 29107, University Library of Munich, Germany.
  73. Sirio Aramonte & Matthew Carl, 2021. "Firm-level R&D after periods of intense technological innovation: the role of investor sentiment," BIS Working Papers 916, Bank for International Settlements.
  74. Harashima, Taiji, 2012. "A Theory of Intelligence and Total Factor Productivity: Value Added Reflects the Fruits of Fluid Intelligence," MPRA Paper 43151, University Library of Munich, Germany.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.