IDEAS home Printed from https://ideas.repec.org/r/ecm/emetrp/v78y2010i6p2021-2042.html
   My bibliography  Save this item

Irregular Identification, Support Conditions, and Inverse Weight Estimation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Luis E. Candelaria, 2020. "A Semiparametric Network Formation Model with Unobserved Linear Heterogeneity," Papers 2007.05403, arXiv.org, revised Aug 2020.
  2. Candelaria, Luis E., 2020. "A Semiparametric Network Formation Model with Unobserved Linear Heterogeneity," The Warwick Economics Research Paper Series (TWERPS) 1279, University of Warwick, Department of Economics.
  3. Lewbel, Arthur & Tang, Xun, 2015. "Identification and estimation of games with incomplete information using excluded regressors," Journal of Econometrics, Elsevier, vol. 189(1), pages 229-244.
  4. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
  5. Michael Lechner & Anthony Strittmatter, 2019. "Practical procedures to deal with common support problems in matching estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
  6. Marta Rubio Codina & Pierre Dubois, 2012. "Child Care Provision: Semiparametric Evidence from a Randomized Experiment in Mexico," Annals of Economics and Statistics, GENES, issue 105-106, pages 155-184.
  7. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
  8. Klein, Roger & Shen, Chan & Vella, Francis, 2015. "Estimation of marginal effects in semiparametric selection models with binary outcomes," Journal of Econometrics, Elsevier, vol. 185(1), pages 82-94.
  9. Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
  10. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
  11. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
  12. Khan, Shakeeb & Ponomareva, Maria & Tamer, Elie, 2016. "Identification of panel data models with endogenous censoring," Journal of Econometrics, Elsevier, vol. 194(1), pages 57-75.
  13. Wan, Yuanyuan & Xu, Haiqing, 2015. "Inference in semiparametric binary response models with interval data," Journal of Econometrics, Elsevier, vol. 184(2), pages 347-360.
  14. Chen, Xiaohong & Liao, Zhipeng, 2014. "Sieve M inference on irregular parameters," Journal of Econometrics, Elsevier, vol. 182(1), pages 70-86.
  15. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
  16. Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012. "The random coefficients logit model is identified," Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
  17. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 45(3), pages 809-829, August.
  18. Adeola Oyenubi, 2020. "A note on Covariate Balancing Propensity Score and Instrument-like variables," Economics Bulletin, AccessEcon, vol. 40(1), pages 202-209.
  19. Lewbel, Arthur & Yang, Thomas Tao, 2016. "Identifying the average treatment effect in ordered treatment models without unconfoundedness," Journal of Econometrics, Elsevier, vol. 195(1), pages 1-22.
  20. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
  21. D’Haultfœuille, Xavier & Maurel, Arnaud & Zhang, Yichong, 2018. "Extremal quantile regressions for selection models and the black–white wage gap," Journal of Econometrics, Elsevier, vol. 203(1), pages 129-142.
  22. Carlos A. Flores & Oscar A. Mitnik, 2013. "Comparing Treatments across Labor Markets: An Assessment of Nonexperimental Multiple-Treatment Strategies," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1691-1707, December.
  23. Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
  24. Gao, Yichen & Li, Cong & Liang, Zhongwen, 2015. "Binary response correlated random coefficient panel data models," Journal of Econometrics, Elsevier, vol. 188(2), pages 421-434.
  25. Bontemps, Christian & Kumar, Rohit, 2018. "A Geometric Approach to Inference in Set-Identified Entry Games," TSE Working Papers 18-943, Toulouse School of Economics (TSE), revised Mar 2019.
  26. Darwin Ugarte Ontiveros & Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta, 2017. "Outliers in semi-parametric Estimation of Treatment Effects," Documentos de Trabajo CIEF 015810, Universidad EAFIT.
  27. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
  28. Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020. "Wage premium of Communist Party membership: Evidence from China," Pacific Economic Review, Wiley Blackwell, vol. 25(3), pages 309-338, August.
  29. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
  30. Takeshima, Hiroyuki & Houssou, Nazaire & Diao, Xinshen, 2018. "Effects of tractor ownership on returns-to-scale in agriculture: Evidence from maize in Ghana," Food Policy, Elsevier, vol. 77(C), pages 33-49.
  31. Zhentao Shi & Huanhuan Zheng, 2018. "Structural estimation of behavioral heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 690-707, August.
  32. Christian Bontemps & Rohit Kumar, 2019. "A Geometric Approach to Inference in Set-Identified Entry Games," Working Papers hal-02137356, HAL.
  33. Martin Huber, 2015. "Causal Pitfalls in the Decomposition of Wage Gaps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 179-191, April.
  34. Pingel, Ronnie & Waernbaum, Ingeborg, 2015. "Correlation and efficiency of propensity score-based estimators for average causal effects," Working Paper Series 2015:3, IFAU - Institute for Evaluation of Labour Market and Education Policy.
  35. Valentina Corradi & Daniel Gutknecht, 2019. "Testing for Quantile Sample Selection," Papers 1907.07412, arXiv.org, revised Jan 2021.
  36. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
  37. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
  38. Takeshima, Hiroyuki & Shrestha, Rudra Bahadur & Kaphle, Basu Dev & Karkee, Madhab & Pokhrel, Suroj & Kumar, Anjani, 2016. "Effects of agricultural mechanization on smallholders and their self-selection into farming: An insight from the Nepal Terai," IFPRI discussion papers 1583, International Food Policy Research Institute (IFPRI).
  39. Hoderlein, Stefan & Sherman, Robert, 2015. "Identification and estimation in a correlated random coefficients binary response model," Journal of Econometrics, Elsevier, vol. 188(1), pages 135-149.
  40. Bontemps, Christophe & Nauges, Céline, 2017. "Endogenous Variables in Binary Choice Models: Some Insights for Practitioners," TSE Working Papers 17-855, Toulouse School of Economics (TSE).
  41. Rothe, Christoph, 2016. "The Value of Knowing the Propensity Score for Estimating Average Treatment Effects," IZA Discussion Papers 9989, Institute of Labor Economics (IZA).
  42. Paolo Riccardo Morganti, 2021. "Extreme Value Theory and Auction Models," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-15, Abril - J.
  43. Kasy, Maximilian, "undated". "Instrumental variables with unrestricted heterogeneity and continuous treatment - DON'T CITE! SEE ERRATUM BELOW," Working Paper 33257, Harvard University OpenScholar.
  44. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP61/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  45. Pohlmeier, Winfried & Seiberlich, Ruben & Uysal, Selver Derya, 2016. "A simple and successful shrinkage method for weighting estimators of treatment effects," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 512-525.
  46. Christoph Rothe, 2017. "Robust Confidence Intervals for Average Treatment Effects Under Limited Overlap," Econometrica, Econometric Society, vol. 85, pages 645-660, March.
  47. Hoshino, Tadao, 2013. "Partial identification in binary response models with nonignorable nonresponses," Economics Letters, Elsevier, vol. 121(1), pages 74-78.
  48. Tadao Hoshino & Takahide Yanagi, 2018. "Treatment Effect Models with Strategic Interaction in Treatment Decisions," Papers 1810.08350, arXiv.org, revised Aug 2020.
  49. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
  50. Adeola Oyenubi & Martin Wittenberg, 0. "Does the choice of balance-measure matter under genetic matching?," Empirical Economics, Springer, vol. 0, pages 1-14.
  51. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
  52. Timothy B Armstrong & Michal Kolesár, 2018. "A Simple Adjustment for Bandwidth Snooping," Review of Economic Studies, Oxford University Press, vol. 85(2), pages 732-765.
  53. Maximilian Kasy, 2014. "Instrumental Variables with Unrestricted Heterogeneity and Continuous Treatment," Review of Economic Studies, Oxford University Press, vol. 81(4), pages 1614-1636.
  54. Marc Henry & Koen Jochmans & Bernard Salani'e, 2021. "Inference on two component mixtures under tail restrictions," Papers 2102.06232, arXiv.org.
  55. Mogens Fosgerau & Dennis Kristensen, 2019. "Identification of a class of index models: A topological approach," CeMMAP working papers CWP52/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  56. Karun Adusumilli & Friedrich Geiecke & Claudio Schilter, 2019. "Dynamically optimal treatment allocation using Reinforcement Learning," Papers 1904.01047, arXiv.org, revised Aug 2020.
  57. Chen, Songnian & Khan, Shakeeb & Tang, Xun, 2016. "Informational content of special regressors in heteroskedastic binary response models," Journal of Econometrics, Elsevier, vol. 193(1), pages 162-182.
  58. Zhentao Shi & Huanhuan Zheng, 2018. "Structural Estimation of Behavioral Heterogeneity," Papers 1802.03735, arXiv.org, revised Jun 2018.
  59. Sung Jae Jun & Joris Pinkse & Haiqing Xu & Nese Yildiz, 2012. "Identification of treatment effects in a triangular system of equations," Department of Economics Working Papers 130910, The University of Texas at Austin, Department of Economics, revised Oct 2012.
  60. Ashesh Rambachan & Neil Shephard, 2019. "Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function," Papers 1903.01637, arXiv.org, revised Feb 2020.
  61. repec:gam:jecnmx:v:4:y:2016:i:1:p:7:d:63449 is not listed on IDEAS
  62. Kline, Brendan, 2015. "Identification of complete information games," Journal of Econometrics, Elsevier, vol. 189(1), pages 117-131.
  63. James L. Powell, 2017. "Identification and Asymptotic Approximations: Three Examples of Progress in Econometric Theory," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 107-124, Spring.
  64. Sung Jae Jun & Joris Pinkse & Haiqing Xu & Neşe Yıldız, 2016. "Multiple Discrete Endogenous Variables in Weakly-Separable Triangular Models," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-21, February.
  65. Bontemps, Christian & Kumar, Rohit, 2020. "A geometric approach to inference in set-identified entry games," Journal of Econometrics, Elsevier, vol. 218(2), pages 373-389.
  66. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
  67. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Viewpoint: Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics, Canadian Economics Association, vol. 45(3), pages 809-829, August.
  68. Arthur Lewbel & Thomas Tao Yang, 2013. "Identifying the Average Treatment Effect in a Two Threshold Model," Boston College Working Papers in Economics 825, Boston College Department of Economics.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.