IDEAS home Printed from https://ideas.repec.org/p/fri/fribow/fribow00495.html
   My bibliography  Save this paper

Direct and indirect effects of continuous treatments based on generalized propensity score weighting

Author

Listed:
  • Hsu, Yu-Chin
  • Huber, Martin
  • Lee, Ying-Ying
  • Pipoz, Layal

Abstract

This paper proposes semi- and nonparametric methods for disentangling the total causal effect of a continuous treatment on an outcome variable into its natural direct effect and the indirect effect that operates through one or several intermediate variables or mediators. Our approach is based on weighting observations by the inverse of two versions of the generalized propensity score (GPS), namely the conditional density of treatment either given observed covariates or given covariates and the mediator. Our effect estimators are shown to be asymptotically normal when the GPS is estimated by either a parametric or a nonparametric kernel-based method. We also provide a simulation study and an application to the Job Corps program.

Suggested Citation

  • Hsu, Yu-Chin & Huber, Martin & Lee, Ying-Ying & Pipoz, Layal, 2018. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," FSES Working Papers 495, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
  • Handle: RePEc:fri:fribow:fribow00495
    as

    Download full text from publisher

    File URL: https://doc.rero.ch/record/309416/files/WP_SES_495.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Markus Frölich & Martin Huber, 2019. "Including Covariates in the Regression Discontinuity Design," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 736-748, October.
    2. Martin Huber, 2014. "Identifying Causal Mechanisms (Primarily) Based On Inverse Probability Weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(6), pages 920-943, September.
    3. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
    4. Andrew Gelman & Guido Imbens, 2013. "Why ask Why? Forward Causal Inference and Reverse Causal Questions," NBER Working Papers 19614, National Bureau of Economic Research, Inc.
    5. Kluve, Jochen & Schneider, Hilmar & Uhlendorff, Arne & Zhao, Zhong, 2007. "Evaluating Continuous Training Programs Using the Generalized Propensity Score," IZA Discussion Papers 3255, Institute of Labor Economics (IZA).
    6. Flores, Carlos A. & Flores-Lagunes, Alfonso, 2009. "Identification and Estimation of Causal Mechanisms and Net Effects of a Treatment under Unconfoundedness," IZA Discussion Papers 4237, Institute of Labor Economics (IZA).
    7. Martin E Andresen & Martin Huber, 2021. "Instrument-based estimation with binarised treatments: issues and tests for the exclusion restriction," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 536-558.
    8. J.J. Heckman & E.E. Leamer (ed.), 2001. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 5, number 5.
    9. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    10. Steen, Johan & Loeys, Tom & Moerkerke, Beatrijs & Vansteelandt, Stijn, 2017. "medflex: An R Package for Flexible Mediation Analysis using Natural Effect Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i11).
    11. Eugster, Nicolas & Isakov, Dušan, 2019. "Founding family ownership, stock market returns, and agency problems," Journal of Banking & Finance, Elsevier, vol. 107(C), pages 1-1.
    12. Carlos A. Flores & Alfonso Flores-Lagunes, 2010. "Nonparametric Partial Identification of Causal Net and Mechanism Average Treatment Effects," Working Papers 2010-25, University of Miami, Department of Economics.
    13. Carlos A. Flores, 2007. "Estimation of Dose-Response Functions and Optimal Doses with a Continuous Treatment," Working Papers 0707, University of Miami, Department of Economics.
    14. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(2), pages 1-21, June.
    15. Carlos A. Flores & Alfonso Flores-Lagunes & Arturo Gonzalez & Todd C. Neumann, 2012. "Estimating the Effects of Length of Exposure to Instruction in a Training Program: The Case of Job Corps," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 153-171, February.
    16. repec:mpr:mprres:6097 is not listed on IDEAS
    17. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    18. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    19. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    20. Peter Z. Schochet & John Burghardt & Steven Glazerman, 2001. "National Job Corps Study: The Impacts of Job Corps on Participants' Employment and Related Outcomes," Mathematica Policy Research Reports db6c4204b8e1408bb0c6289ec, Mathematica Policy Research.
    21. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    22. Buechel, Berno & Mechtenberg, Lydia & Petersen, Julia, 2017. "Peer effects on perseverance," FSES Working Papers 488, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    23. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    24. Jeffrey M. Albert & Suchitra Nelson, 2011. "Generalized Causal Mediation Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 1028-1038, September.
    25. Imai, Kosuke & Yamamoto, Teppei, 2013. "Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments," Political Analysis, Cambridge University Press, vol. 21(2), pages 141-171, April.
    26. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    27. Michela Bia & Alessandra Mattei, 2012. "Assessing the effect of the amount of financial aids to Piedmont firms using the generalized propensity score," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 485-516, November.
    28. Hsu Yu-Chin & Huber Martin & Lai Tsung-Chih, 2019. "Nonparametric estimation of natural direct and indirect effects based on inverse probability weighting," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-20, January.
    29. Thomas R. Ten Have & Marshall M. Joffe & Kevin G. Lynch & Gregory K. Brown & Stephen A. Maisto & Aaron T. Beck, 2007. "Causal Mediation Analyses with Rank Preserving Models," Biometrics, The International Biometric Society, vol. 63(3), pages 926-934, September.
    30. Antonio F. Galvao & Liang Wang, 2015. "Uniformly Semiparametric Efficient Estimation of Treatment Effects With a Continuous Treatment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1528-1542, December.
    31. Peter Z. Schochet & John Burghardt & Sheena McConnell, 2008. "Does Job Corps Work? Impact Findings from the National Job Corps Study," American Economic Review, American Economic Association, vol. 98(5), pages 1864-1886, December.
    32. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    33. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    34. Tingley, Dustin & Yamamoto, Teppei & Hirose, Kentaro & Keele, Luke & Imai, Kosuke, 2014. "mediation: R Package for Causal Mediation Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i05).
    35. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    36. repec:mpr:mprres:2951 is not listed on IDEAS
    37. Huber, Martin, 2019. "A review of causal mediation analysis for assessing direct and indirect treatment effects," FSES Working Papers 500, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
    2. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    4. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    5. Martin Huber & Anna Solovyeva, 2020. "Direct and Indirect Effects under Sample Selection and Outcome Attrition," Econometrics, MDPI, vol. 8(4), pages 1-25, December.
    6. Yizhen Xu & Numair Sani & AmirEmad Ghassami & Ilya Shpitser, 2021. "Multiply Robust Causal Mediation Analysis with Continuous Treatments," Papers 2105.09254, arXiv.org, revised Oct 2024.
    7. Huang, W. & Linton, O. & Zhang, Z., 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Cambridge Working Papers in Economics 2113, Faculty of Economics, University of Cambridge.
    8. Yu-Chin Hsu & Martin Huber & Ying-Ying Lee & Chu-An Liu, 2021. "Testing Monotonicity of Mean Potential Outcomes in a Continuous Treatment with High-Dimensional Data," Papers 2106.04237, arXiv.org, revised Aug 2022.
    9. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects," Papers 2112.14249, arXiv.org, revised Mar 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    2. Flores-Lagunes, Alfonso & Gonzalez, Arturo & Neumann, Todd C., 2007. "Estimating the Effects of Length of Exposure to a Training Program: The Case of Job Corps," IZA Discussion Papers 2846, Institute of Labor Economics (IZA).
    3. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    6. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
    7. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
    8. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    9. Hsu Yu-Chin & Huber Martin & Lai Tsung-Chih, 2019. "Nonparametric estimation of natural direct and indirect effects based on inverse probability weighting," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-20, January.
    10. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    11. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    12. Ying-Ying Lee, 2014. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Economics Series Working Papers 706, University of Oxford, Department of Economics.
    13. Viviana Celli, 2022. "Causal mediation analysis in economics: Objectives, assumptions, models," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 214-234, February.
    14. Huber, Martin, 2012. "Identifying causal mechanisms in experiments (primarily) based on inverse probability weighting," Economics Working Paper Series 1213, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    15. Yu-Chin Hsu & Martin Huber & Ying-Ying Lee & Chu-An Liu, 2021. "Testing Monotonicity of Mean Potential Outcomes in a Continuous Treatment with High-Dimensional Data," Papers 2106.04237, arXiv.org, revised Aug 2022.
    16. Ida D'Attoma & Silvia Pacei, 2018. "Evaluating the Effects of Product Innovation on the Performance of European Firms by Using the Generalised Propensity Score," German Economic Review, Verein für Socialpolitik, vol. 19(1), pages 94-112, February.
    17. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    18. Steckenleiter, Carina & Lechner, Michael & Pawlowski, Tim & Schüttoff, Ute, 2019. "Do local public expenditures on sports facilities affect sports participation in Germany?," Economics Working Paper Series 1905, University of St. Gallen, School of Economics and Political Science.
    19. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    20. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.

    More about this item

    Keywords

    Mediation; direct and indirect effects; continuous treatment; weighting; generalized propensity score;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fri:fribow:fribow00495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mustapha Obbad (email available below). General contact details of provider: https://edirc.repec.org/data/wsffrch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.