IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.11179.html
   My bibliography  Save this paper

Treatment Evaluation at the Intensive and Extensive Margins

Author

Listed:
  • Phillip Heiler
  • Asbj{o}rn Kaufmann
  • Bezirgen Veliyev

Abstract

This paper provides a solution to the evaluation of treatment effects in selective samples when neither instruments nor parametric assumptions are available. We provide sharp bounds for average treatment effects under a conditional monotonicity assumption for all principal strata, i.e. units characterizing the complete intensive and extensive margins. Most importantly, we allow for a large share of units whose selection is indifferent to treatment, e.g. due to non-compliance. The existence of such a population is crucially tied to the regularity of sharp population bounds and thus conventional asymptotic inference for methods such as Lee bounds can be misleading. It can be solved using smoothed outer identification regions for inference. We provide semiparametrically efficient debiased machine learning estimators for both regular and smooth bounds that can accommodate high-dimensional covariates and flexible functional forms. Our study of active labor market policy reveals the empirical prevalence of the aforementioned indifference population and supports results from previous impact analysis under much weaker assumptions.

Suggested Citation

  • Phillip Heiler & Asbj{o}rn Kaufmann & Bezirgen Veliyev, 2024. "Treatment Evaluation at the Intensive and Extensive Margins," Papers 2412.11179, arXiv.org.
  • Handle: RePEc:arx:papers:2412.11179
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.11179
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.11179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.