IDEAS home Printed from https://ideas.repec.org/p/boc/bocoec/810.html
   My bibliography  Save this paper

An Overview of the Special Regressor Method

Author

Listed:
  • Arthur Lewbel

    () (Boston College)

Abstract

This chapter provides background for understanding and applying special regressor methods. This chapter is intended for inclusion in the "Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics," Co-edited by Aman Ullah, Jeffrey Racine, and Liangjun Su, to be published by Oxford University Press.

Suggested Citation

  • Arthur Lewbel, 2012. "An Overview of the Special Regressor Method," Boston College Working Papers in Economics 810, Boston College Department of Economics.
  • Handle: RePEc:boc:bocoec:810
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/EC-P/wp810.pdf
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Matzkin, Rosa L, 1992. "Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models," Econometrica, Econometric Society, vol. 60(2), pages 239-270, March.
    2. Jeremy T. Fox & David H. Hsu & Chenyu Yang, 2012. "Unobserved Heterogeneity in Matching Games with an Application to Venture Capital," NBER Working Papers 18168, National Bureau of Economic Research, Inc.
    3. Khan, Shakeeb & Lewbel, Arthur, 2007. "Weighted And Two-Stage Least Squares Estimation Of Semiparametric Truncated Regression Models," Econometric Theory, Cambridge University Press, vol. 23(02), pages 309-347, April.
    4. Thierry Magnac & Eric Maurin, 2008. "Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data," Review of Economic Studies, Oxford University Press, pages 835-864.
    5. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355, June.
    6. Xiaohong Chen & Markus Reiss, 2007. "On rate optimality for ill-posed inverse problems in econometrics," CeMMAP working papers CWP20/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, pages 497-521.
    8. Hoderlein, Stefan & Klemelä, Jussi & Mammen, Enno, 2010. "Analyzing The Random Coefficient Model Nonparametrically," Econometric Theory, Cambridge University Press, vol. 26(03), pages 804-837, June.
    9. Chu, Ba & Jacho-Chávez, David T., 2012. "k-NEAREST NEIGHBOR ESTIMATION OF INVERSE-DENSITY-WEIGHTED EXPECTATIONS WITH DEPENDENT DATA," Econometric Theory, Cambridge University Press, vol. 28(04), pages 769-803, August.
    10. Christopher Baum & Yingying Dong & Arthur Lewbel & Tao Yang, 2012. "Binary choice models with endogenous regressors," SAN12 Stata Conference 9, Stata Users Group.
    11. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    12. Edward Vytlacil & Nese Yildiz, 2007. "Dummy Endogenous Variables in Weakly Separable Models," Econometrica, Econometric Society, vol. 75(3), pages 757-779, May.
    13. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    14. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    15. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    16. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, pages 76-104.
    17. Arthur Lewbel, 1998. "Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors," Econometrica, Econometric Society, vol. 66(1), pages 105-122, January.
    18. Bo E. Honore & Arthur Lewbel, 2002. "Semiparametric Binary Choice Panel Data Models Without Strictly Exogeneous Regressors," Econometrica, Econometric Society, vol. 70(5), pages 2053-2063, September.
    19. Ai, Chunrong & Gan, Li, 2010. "An alternative root-n consistent estimator for panel data binary choice models," Journal of Econometrics, Elsevier, vol. 157(1), pages 93-100, July.
    20. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, pages 581-607.
    21. Stewart, Mark B., 2005. "A comparison of semiparametric estimators for the ordered response model," Computational Statistics & Data Analysis, Elsevier, pages 555-573.
    22. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, pages 341-396.
    23. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    24. Maurin, Eric, 2002. "The impact of parental income on early schooling transitions: A re-examination using data over three generations," Journal of Public Economics, Elsevier, pages 301-332.
    25. Lewbel, Arthur & Schennach, Susanne M., 2007. "A simple ordered data estimator for inverse density weighted expectations," Journal of Econometrics, Elsevier, vol. 136(1), pages 189-211, January.
    26. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    27. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    28. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, pages 269-295.
    29. Yingying Dong, 2012. "Regression Discontinuity Applications with Rounding Errors in the Running Variable," Working Papers 111206, University of California-Irvine, Department of Economics.
    30. Lewbel, Arthur, 1997. "Semiparametric Estimation of Location and Other Discrete Choice Moments," Econometric Theory, Cambridge University Press, vol. 13(01), pages 32-51, February.
    31. Denis Cogneau & Eric Maurin, 2001. "Parental Income and School Attendance in a Low-Income Country : A Semi-parametric Analysis," Working Papers 2001-08, Center for Research in Economics and Statistics.
    32. Goux, Dominique & Maurin, Eric, 2005. "The effect of overcrowded housing on children's performance at school," Journal of Public Economics, Elsevier, pages 797-819.
    33. Jacho-Chávez, David T., 2009. "Efficiency Bounds For Semiparametric Estimation Of Inverse Conditional-Density-Weighted Functions," Econometric Theory, Cambridge University Press, vol. 25(03), pages 847-855, June.
    34. Briesch, Richard A. & Chintagunta, Pradeep K. & Matzkin, Rosa L., 2010. "Nonparametric Discrete Choice Models With Unobserved Heterogeneity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 291-307.
    35. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    36. Eric Maurin, 1999. "The Impact of Parental Income on Early Schooling Transitions : A Re-examination Using Data over Three Generations," Working Papers 99-69, Center for Research in Economics and Statistics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debopam Bhattacharya, 2015. "Nonparametric Welfare Analysis for Discrete Choice," Econometrica, Econometric Society, vol. 83, pages 617-649, March.
    2. repec:eee:juipol:v:45:y:2017:i:c:p:45-60 is not listed on IDEAS

    More about this item

    Keywords

    special regressor method;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D13 - Microeconomics - - Household Behavior - - - Household Production and Intrahouse Allocation
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:810. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum). General contact details of provider: http://edirc.repec.org/data/debocus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.