IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v83y2015ip617-649.html

Nonparametric Welfare Analysis for Discrete Choice

Author

Listed:
  • Debopam Bhattacharya

Abstract

We consider empirical measurement of equivalent variation (EV) and compensating variation (CV) resulting from price change of a discrete good using individual‐level data when there is unobserved heterogeneity in preferences. We show that for binary and unordered multinomial choice, the marginal distributions of EV and CV can be expressed as simple closed‐form functionals of conditional choice probabilities under essentially unrestricted preference distributions. These results hold even when the distribution and dimension of unobserved heterogeneity are neither known nor identified, and utilities are neither quasilinear nor parametrically specified. The welfare distributions take simple forms that are easy to compute in applications. In particular, average EV for a price rise equals the change in average Marshallian consumer surplus and is smaller than average CV for a normal good. These nonparametric point‐identification results fail for ordered choice if the unit price is identical for all alternatives, thereby providing a connection to Hausman–Newey's (2014) partial identification results for the limiting case of continuous choice.

Suggested Citation

  • Debopam Bhattacharya, 2015. "Nonparametric Welfare Analysis for Discrete Choice," Econometrica, Econometric Society, vol. 83, pages 617-649, March.
  • Handle: RePEc:wly:emetrp:v:83:y:2015:i::p:617-649
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:83:y:2015:i::p:617-649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.