IDEAS home Printed from https://ideas.repec.org/p/eec/wpaper/1406.html
   My bibliography  Save this paper

Comparing conventional and organic citrus grower efficiency in Spain

Author

Listed:
  • Mercedes Beltrán

    (Universidad de Valencia (Spain))

  • Ernest Reig

    (Universidad de Valencia (Spain))

Abstract

This paper compares the organic and conventional citriculture systems in Spain from the perspective of their technical efficiency. The efficiency of the two growing systems is compared in relation to a metafrontier that envelops both technologies in order to identify the limitations each farming system faces. In addition, the paper analyzes how efficient each growing system is at using its own technology, that is, their efficiency in relation to the best practices in their group. Contrary to conventional practice, farms’ performance is analyzed in terms of the cost of specific growing tasks: soil and plant cover management, pruning, fertilization and phytosanitary treatments. The results highlight that both organic and conventional orchards would achieve substantial global cost savings if they reached the maximum level of efficiency that their technological restrictions permit. The gap between the levels of efficiency on the frontier of each of the systems and the metafrontier is much wider in the case of organic than in conventional citriculture. Consequently, there is evidence that the limitations imposed on organic citriculture by regulatory and technological determinants have a significant impact on the relative efficiency of organic orchards in citrus fruit production, with potential consequences as regards their financial viability.

Suggested Citation

  • Mercedes Beltrán & Ernest Reig, 2014. "Comparing conventional and organic citrus grower efficiency in Spain," Working Papers 1406, Department of Applied Economics II, Universidad de Valencia.
  • Handle: RePEc:eec:wpaper:1406
    as

    Download full text from publisher

    File URL: http://repecsrv.uv.es/paper/RePEc/pdf/eec_1406.pdf
    File Function: First version, 2014
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alfons Oude Lansink & Ky–sti Pietola, 2002. "Effciency and productivity of conventional and organic farms in Finland 1994--1997," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 29(1), pages 51-66, March.
    2. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    3. Swinton, Scott M. & Lupi, Frank & Robertson, G. Philip & Hamilton, Stephen K., 2007. "Ecosystem services and agriculture: Cultivating agricultural ecosystems for diverse benefits," Ecological Economics, Elsevier, vol. 64(2), pages 245-252, December.
    4. Teresa Serra & Barry Goodwin, 2009. "The efficiency of Spanish arable crop organic farms, a local maximum likelihood approach," Journal of Productivity Analysis, Springer, vol. 31(2), pages 113-124, April.
    5. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    6. Teresa Serra & Alfons Oude Lansink & Spiro E. Stefanou, 2010. "Measurement of Dynamic Efficiency: A Directional Distance Function Parametric Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 752-763.
    7. Hayami, Yujiro & Ruttan, Vernon W, 1970. "Agricultural Productivity Differences Among Countries," American Economic Review, American Economic Association, vol. 60(5), pages 895-911, December.
    8. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    9. Mercedes Beltrán-Esteve & Andrés J. Picazo-Tadeo & Ernest Reig-Martínez, 2012. "What makes a citrus farmer go organic? Empirical evidence from Spanish citrus farming," Working Papers 1205, Department of Applied Economics II, Universidad de Valencia.
    10. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    11. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    12. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    13. Breustedt, Gunnar & Latacz-Lohmann, Uwe & Tiedemann, Torben, 2011. "Organic or conventional? Optimal dairy farming technology under the EU milk quota system and organic subsidies," Food Policy, Elsevier, vol. 36(2), pages 223-229, April.
    14. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    15. Francisco J. SÁEZ‐FERNÁNDEZ & Andrés J. PICAZO‐TADEO & Carmen M. LLORCA‐RODRÍGUEZ, 2012. "Do Labour Societies Perform Differently To Cooperatives? Evidence From The Spanish Building Industry," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 83(1), pages 61-81, March.
    16. Zhang, Wei & Ricketts, Taylor H. & Kremen, Claire & Carney, Karen & Swinton, Scott M., 2007. "Ecosystem services and dis-services to agriculture," Ecological Economics, Elsevier, vol. 64(2), pages 253-260, December.
    17. Carlos D. Mayen & Joseph V. Balagtas & Corinne E. Alexander, 2010. "Technology Adoption and Technical Efficiency: Organic and Conventional Dairy Farms in the United States," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 181-195.
    18. Tzouvelekas, Vangelis & Pantzios, Christos J. & Fotopoulos, Christos, 2001. "Technical efficiency of alternative farming systems: the case of Greek organic and conventional olive-growing farms," Food Policy, Elsevier, vol. 26(6), pages 549-569, December.
    19. Jules Pretty & Craig Brett & David Gee & Rachel Hine & Chris Mason & James Morison & Matthew Rayment & Gert Van Der Bijl & Thomas Dobbs, 2001. "Policy Challenges and Priorities for Internalizing the Externalities of Modern Agriculture," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 44(2), pages 263-283.
    20. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. DJOKOTO, Justice Gameli & OWUSU, Victor & AWUNYO-VITOR, Dadson, 2020. "Is Organic Agriculture More Scale Efficient Than Conventional Agriculture? The Case Of Cocoa Cultivation In Ghana," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 23(2), October.
    2. Maria Raimondo & Francesco Caracciolo & Concetta Nazzaro & Giuseppe Marotta, 2021. "Organic Farming Increases the Technical Efficiency of Olive Farms in Italy," Agriculture, MDPI, vol. 11(3), pages 1-15, March.
    3. Tanko, Mohammed & Ismaila, Salifu, 2021. "How culture and religion influence the agriculture technology gap in Northern Ghana," World Development Perspectives, Elsevier, vol. 22(C).
    4. Djokoto, Justice Gameli & Pomeyie, Paragon, 2018. "Productivity of organic and conventional agriculture – a common technology analysis," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 120(3), December.
    5. Kenichi Kashiwagi & Hajime Kamiyama, 2023. "Effect of adoption of organic farming on technical efficiency of olive-growing farms: empirical evidence from West Bank of Palestine," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-28, December.
    6. Froehlich, Anderson G. & Melo, Andrea S.S.A. & Sampaio, Breno, 2018. "Comparing the Profitability of Organic and Conventional Production in Family Farming: Empirical Evidence From Brazil," Ecological Economics, Elsevier, vol. 150(C), pages 307-314.
    7. Magdalena Kapelko & Alfons Oude Lansink, 2018. "Managerial and program inefficiency for European meat manufacturing firms: A dynamic multidirectional inefficiency analysis approach," Journal of Productivity Analysis, Springer, vol. 49(1), pages 25-36, February.
    8. Coral Ortiz & Antonio Torregrosa & Sergio Castro-García, 2021. "Comparison of a Lightweight Experimental Shaker and an Orchard Tractor Mounted Trunk Shaker for Fresh Market Citrus Harvesting," Agriculture, MDPI, vol. 11(11), pages 1-10, November.
    9. Lakner, Sebastian & Breustedt, Gunnar, 2015. "Efficiency analysis of organic farming systems- a review of methods, topics, results, and conclusions," 2015 Conference, August 9-14, 2015, Milan, Italy 212025, International Association of Agricultural Economists.
    10. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    11. Anirban Nandy & Piyush Kumar Singh & Alok Kumar Singh, 2021. "Systematic Review and Meta- regression Analysis of Technical Efficiency of Agricultural Production Systems," Global Business Review, International Management Institute, vol. 22(2), pages 396-421, April.
    12. Pépin, Antonin & Morel, Kevin & van der Werf, Hayo M.G., 2021. "Conventionalised vs. agroecological practices on organic vegetable farms: Investigating the influence of farm structure in a bifurcation perspective," Agricultural Systems, Elsevier, vol. 190(C).
    13. Casolani, Nicola & Nissi, Eugenia & Giampaolo, Antonio & Liberatore, Lolita, 2021. "Evaluating the effects of European support measures for Italian organic farms," Land Use Policy, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.
    2. Lakner, Sebastian & Breustedt, Gunnar, 2015. "Efficiency analysis of organic farming systems- a review of methods, topics, results, and conclusions," 2015 Conference, August 9-14, 2015, Milan, Italy 212025, International Association of Agricultural Economists.
    3. Jayanath Ananda & Dong-hyun Oh, 2023. "Assessing environmentally sensitive productivity growth: incorporating externalities and heterogeneity into water sector evaluations," Journal of Productivity Analysis, Springer, vol. 59(1), pages 45-60, February.
    4. Khanal, Uttam & Wilson, Clevo & Shankar, Sriram & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farm performance analysis: Technical efficiencies and technology gaps of Nepalese farmers in different agro-ecological regions," Land Use Policy, Elsevier, vol. 76(C), pages 645-653.
    5. Fogarasi, Jozsef & Latruffe, Laure, 2009. "Farm performance and support in Central and Western Europe: a comparison of Hungary and France," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51053, Agricultural Economics Society.
    6. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2019. "Performance comparison of management groups under centralised management," European Journal of Operational Research, Elsevier, vol. 278(3), pages 845-854.
    7. Laure Latruffe & Céline Nauges, 2014. "Technical efficiency and conversion to organic farming: the case of France," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 41(2), pages 227-253.
    8. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    9. Walheer, Barnabé, 2018. "Aggregation of metafrontier technology gap ratios: the case of European sectors in 1995–2015," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1013-1026.
    10. He, Yan & Chiu, Yung-ho & Zhang, Bin, 2015. "The impact of corporate governance on state-owned and non-state-owned firms efficiency in China," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 252-277.
    11. Hong-Oanh Nguyen & Hong-Son Nghiem & Young-Tae Chang, 2018. "A regional perspective of port performance using metafrontier analysis: the case study of Vietnamese ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 20(1), pages 112-130, March.
    12. Latruffe, Laure & Nauges, Celine, 2010. "Converting to organic farming in France: Is there a selection problem?," 120th Seminar, September 2-4, 2010, Chania, Crete 109386, European Association of Agricultural Economists.
    13. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    14. Huang, Tai-Hsin & Chiang, Dien-Lin & Tsai, Chao-Min, 2015. "Applying the New Metafrontier Directional Distance Function to Compare Banking Efficiencies in Central and Eastern European Countries," Economic Modelling, Elsevier, vol. 44(C), pages 188-199.
    15. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    16. Kerstens, Kristiaan & O’Donnell, Christopher & Van de Woestyne, Ignace, 2019. "Metatechnology frontier and convexity: A restatement," European Journal of Operational Research, Elsevier, vol. 275(2), pages 780-792.
    17. Víctor Moreira & Boris Bravo-Ureta, 2010. "Technical efficiency and metatechnology ratios for dairy farms in three southern cone countries: a stochastic meta-frontier model," Journal of Productivity Analysis, Springer, vol. 33(1), pages 33-45, February.
    18. Juan Aparicio & Magdalena Kapelko, 2019. "Enhancing the Measurement of Composite Indicators of Corporate Social Performance," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 807-826, July.
    19. Shalander Kumar & Abhishek Das & Michael Hauser & Geoffrey Muricho & Tulu Degefu & Asnake Fikre & Chris Ojiewo & Setotaw Ferede & Rajeev K. Varshney, 2022. "Estimating the potential to close yield gaps through increased efficiency of chickpea production in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1241-1258, October.
    20. Cordero, José Manuel & Prior, Diego & Simancas Rodríguez, Rosa, 2013. "A comparison of public and private schools in Spain using robust nonparametric frontier methods," MPRA Paper 51375, University Library of Munich, Germany.

    More about this item

    Keywords

    Organic citrus farming; technical efficiency; Data Envelopment Analysis (DEA); meta-frontier;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eec:wpaper:1406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vicente Esteve (email available below). General contact details of provider: https://edirc.repec.org/data/dsvales.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.