IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.03715.html
   My bibliography  Save this paper

The Incidental Parameters Problem in Testing for Remaining Cross-section Correlation

Author

Listed:
  • Arturas Juodis
  • Simon Reese

Abstract

In this paper we consider the properties of the Pesaran (2004, 2015a) CD test for cross-section correlation when applied to residuals obtained from panel data models with many estimated parameters. We show that the presence of period-specific parameters leads the CD test statistic to diverge as length of the time dimension of the sample grows. This result holds even if cross-section dependence is correctly accounted for and hence constitutes an example of the Incidental Parameters Problem. The relevance of this problem is investigated both for the classical Time Fixed Effects estimator as well as the Common Correlated Effects estimator of Pesaran (2006). We suggest a weighted CD test statistic which re-establishes standard normal inference under the null hypothesis. Given the widespread use of the CD test statistic to test for remaining cross-section correlation, our results have far reaching implications for empirical researchers.

Suggested Citation

  • Arturas Juodis & Simon Reese, 2018. "The Incidental Parameters Problem in Testing for Remaining Cross-section Correlation," Papers 1810.03715, arXiv.org, revised Oct 2019.
  • Handle: RePEc:arx:papers:1810.03715
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.03715
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Holly, Sean & Pesaran, M. Hashem & Yamagata, Takashi, 2010. "A spatio-temporal model of house prices in the USA," Journal of Econometrics, Elsevier, vol. 158(1), pages 160-173, September.
    2. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    3. Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011. "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
    4. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    5. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    6. Alexander Chudik & Kamiar Mohaddes & M. Hashem Pesaran & Mehdi Raissi, 2017. "Is There a Debt-Threshold Effect on Output Growth?," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 135-150, March.
    7. Botosaru, Irene & Sasaki, Yuya, 2018. "Nonparametric heteroskedasticity in persistent panel processes: An application to earnings dynamics," Journal of Econometrics, Elsevier, vol. 203(2), pages 283-296.
    8. Cesa-Bianchi, Ambrogio & Pesaran, M Hashem & Rebucci, Alessandro, 2018. "Uncertainty and Economic Activity: A Multi-Country Perspective," CEPR Discussion Papers 12713, C.E.P.R. Discussion Papers.
    9. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    10. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    11. Chen, Jia & Gao, Jiti & Li, Degui, 2012. "A New Diagnostic Test For Cross-Section Uncorrelatedness In Nonparametric Panel Data Models," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1144-1163, October.
    12. Thibaut Lamadon & Elena Manresa & Stephane Bonhomme, 2016. "Discretizing Unobserved Heterogeneity," 2016 Meeting Papers 1536, Society for Economic Dynamics.
    13. Badi H. Baltagi & Raffaele Lagravinese & Francesco Moscone & Elisa Tosetti, 2017. "Health Care Expenditure and Income: A Global Perspective," Health Economics, John Wiley & Sons, Ltd., vol. 26(7), pages 863-874, July.
    14. Eberhardt, Markus & Presbitero, Andrea F., 2015. "Public debt and growth: Heterogeneity and non-linearity," Journal of International Economics, Elsevier, vol. 97(1), pages 45-58.
    15. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    16. Boneva, L. & Linton, O., 2017. "A Discrete Choice Model For Large Heterogeneous Panels with Interactive Fixed Effects with an Application to the Determinants of Corporate Bond Issuance," Cambridge Working Papers in Economics 1703, Faculty of Economics, University of Cambridge.
    17. Holly, Sean & Pesaran, M. Hashem & Yamagata, Takashi, 2010. "A spatio-temporal model of house prices in the USA," Journal of Econometrics, Elsevier, vol. 158(1), pages 160-173, September.
    18. Gerdie Everaert & Lorenzo Pozzi, 2014. "The Predictability Of Aggregate Consumption Growth In Oecd Countries: A Panel Data Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 431-453, April.
    19. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    20. Badi H. Baltagi & Chihwa Kao & Bin Peng, 2016. "Testing Cross-Sectional Correlation in Large Panel Data Models with Serial Correlation," Econometrics, MDPI, Open Access Journal, vol. 4(4), pages 1-24, November.
    21. Badi H. Baltagi & Raffaele Lagravinese & Francesco Moscone & Elisa Tosetti, 2017. "Health Care Expenditure and Income: A Global Perspective," Health Economics, John Wiley & Sons, Ltd., vol. 26(7), pages 863-874, July.
    22. repec:wly:japmet:v:32:y:2017:i:7:p:1226-1243 is not listed on IDEAS
    23. Sarafidis, Vasilis & Yamagata, Takashi & Robertson, Donald, 2009. "A test of cross section dependence for a linear dynamic panel model with regressors," Journal of Econometrics, Elsevier, vol. 148(2), pages 149-161, February.
    24. Camilla Mastromarco & Laura Serlenga & Yongcheol Shin, 2016. "Modelling Technical Efficiency in Cross Sectionally Dependent Stochastic Frontier Panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 281-297, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.03715. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.