IDEAS home Printed from https://ideas.repec.org/p/uct/uconnp/2016-32.html
   My bibliography  Save this paper

Testing Cross-sectional Correlation in Large Panel Data Models with Serial Correlation

Author

Listed:
  • Badi H. Baltagi

    (Syracuse University)

  • Chihwa Kao

    (University of Connecticut)

  • Bin Peng

    (Huazhong University of Science and Technology)

Abstract

This paper considers the problem of testing cross-sectional correlation in large panel data models with serially correlated errors. It finds that existing tests for cross-sectional correlation encounter size distortions with serial correlation in the errors. To control the size, this paper proposes a modification of Pesaran’s CD test to account for serial correlation of an unknown form in the error term. We derive the limiting distribution of this test as (N, T) → ∞. The test is distribution free and allows for unknown forms of serial correlation in the errors. Monte Carlo simulations show that the test has good size and power for large panels when serial correlation in the errors is present. JEL Classification: C13; C33 Key words: Cross-sectional Correlation Test; Serial Correlation; Large Panel Data Model

Suggested Citation

  • Badi H. Baltagi & Chihwa Kao & Bin Peng, 2016. "Testing Cross-sectional Correlation in Large Panel Data Models with Serial Correlation," Working papers 2016-32, University of Connecticut, Department of Economics.
  • Handle: RePEc:uct:uconnp:2016-32
    as

    Download full text from publisher

    File URL: http://web2.uconn.edu/economics/working/2016-32.pdf
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    2. Donald W. K. Andrews, 2005. "Cross-Section Regression with Common Shocks," Econometrica, Econometric Society, vol. 73(5), pages 1551-1585, September.
    3. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    4. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    5. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    6. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    7. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    8. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    9. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(02), pages 252-277, April.
    10. Badi H. Baltagi & Qu Feng & Chihwa Kao, 2011. "Testing for sphericity in a fixed effects panel data model," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-47, February.
    11. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    12. Francesco Moscone & Elisa Tosetti, 2009. "A Review And Comparison Of Tests Of Cross-Section Independence In Panels," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 528-561, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C - Mathematical and Quantitative Methods
    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uct:uconnp:2016-32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark McConnel). General contact details of provider: http://edirc.repec.org/data/deuctus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.