IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v18y2002i02p252-277_18.html
   My bibliography  Save this article

Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models

Author

Listed:
  • Lee, Lung-Fei

Abstract

Least squares estimation has casually been dismissed as an inconsistent estimation method for mixed regressive, spatial autoregressive models with or without spatial correlated disturbances. Although this statement is correct for a wide class of models, we show that, in economic spatial environments where each unit can be influenced aggregately by a significant portion of units in the population, least squares estimators can be consistent. Indeed, they can even be asymptotically efficient relative to some other estimators. Their computations are easier than alternative instrumental variables and maximum likelihood approaches.

Suggested Citation

  • Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
  • Handle: RePEc:cup:etheor:v:18:y:2002:i:02:p:252-277_18
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466602182028/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:18:y:2002:i:02:p:252-277_18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: https://www.cambridge.org/ect .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.