IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v4y2016i4p44-d82088.html
   My bibliography  Save this article

Testing Cross-Sectional Correlation in Large Panel Data Models with Serial Correlation

Author

Listed:
  • Badi H. Baltagi

    () (Department of Economics & Center for Policy Research, 426 Eggers Hall, Syracuse University, Syracuse, NY 13244-1020, USA)

  • Chihwa Kao

    () (Department of Economics, 365 Fairfield Way, U-1063, University of Connecticut, Storrs, CT 06269-1063, USA)

  • Bin Peng

    () (Department of Finance, 523 School of Economics, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

This paper considers the problem of testing cross-sectional correlation in large panel data models with serially-correlated errors. It finds that existing tests for cross-sectional correlation encounter size distortions with serial correlation in the errors. To control the size, this paper proposes a modification of Pesaran’s Cross-sectional Dependence (CD) test to account for serial correlation of an unknown form in the error term. We derive the limiting distribution of this test as N , T → ∞ . The test is distribution free and allows for unknown forms of serial correlation in the errors. Monte Carlo simulations show that the test has good size and power for large panels when serial correlation in the errors is present.

Suggested Citation

  • Badi H. Baltagi & Chihwa Kao & Bin Peng, 2016. "Testing Cross-Sectional Correlation in Large Panel Data Models with Serial Correlation," Econometrics, MDPI, Open Access Journal, vol. 4(4), pages 1-24, November.
  • Handle: RePEc:gam:jecnmx:v:4:y:2016:i:4:p:44-:d:82088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/4/4/44/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/4/4/44/
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    2. Badi H. Baltagi & Qu Feng & Chihwa Kao, 2011. "Testing for sphericity in a fixed effects panel data model," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-47, February.
    3. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    4. Donald W. K. Andrews, 2005. "Cross-Section Regression with Common Shocks," Econometrica, Econometric Society, vol. 73(5), pages 1551-1585, September.
    5. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    6. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    7. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    8. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    9. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    10. Francesco Moscone & Elisa Tosetti, 2009. "A Review And Comparison Of Tests Of Cross-Section Independence In Panels," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 528-561, July.
    11. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    12. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arturas Juodis & Simon Reese, 2018. "The Incidental Parameters Problem in Testing for Remaining Cross-section Correlation," Papers 1810.03715, arXiv.org, revised Oct 2019.
    2. Chimere O. Iheonu, 2019. "Governance and Domestic Investment in Africa," Working Papers 19/001, European Xtramile Centre of African Studies (EXCAS).
    3. shah, Muhammad ibrahim, 2019. "Fostering innovation in South Asia: Evidence from FMOLS and Causality analysis," MPRA Paper 96193, University Library of Munich, Germany.

    More about this item

    Keywords

    cross-sectional correlation test; serial correlation; large panel data model;

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C - Mathematical and Quantitative Methods
    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:4:y:2016:i:4:p:44-:d:82088. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.