IDEAS home Printed from https://ideas.repec.org/e/pvl34.html
   My authors  Follow this author

Andriana Vlachou

Personal Details

First Name:Andriana
Middle Name:
Last Name:Vlachou
Suffix:
RePEc Short-ID:pvl34

Affiliation

Department of Economics
Athens University of Economics and Business (AUEB)

Athens, Greece
https://www.dept.aueb.gr/econ
RePEc:edi:deauegr (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Vlachou, A., 2000. "The Economics of Global Warmaing: A Critical Assessment," Athens University of Economics and Business 118, Athens University of Economics and Business, Department of International and European Economic Studies.

Articles

  1. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.
  2. Andriana Vlachou, 2005. "Environmental regulation: a value-theoretic and class-based analysis," Cambridge Journal of Economics, Oxford University Press, vol. 29(4), pages 577-599, July.
  3. Vassos, Spyros & Vlachou, Andriana, 1997. "Investigating strategies to reduce CO2 emissions from the electricity sector: the case of Greece," Energy Policy, Elsevier, vol. 25(3), pages 327-336, February.
  4. Vlachou, Andriana & Vassos, Spyros & Andrikopoulos, Andreas, 1996. "Energy and environment: Reducing CO2 emissions from the electric power industry," Journal of Policy Modeling, Elsevier, vol. 18(4), pages 343-376, August.
  5. Efthymoglou, Prodromos G. & Vlachou, Andriana S., 1989. "Productivity in the vertically integrated system of the Greek Electricity Utility, 1970-1985," Energy Economics, Elsevier, vol. 11(2), pages 119-126, April.
  6. Vlachou, A. S. & Samouilidis, E. J., 1986. "Interfuel substitution : Results from several sectors of the Greek economy," Energy Economics, Elsevier, vol. 8(1), pages 39-45, January.
  7. Vlachou, Adriana, 1986. "Dynamic Factor Demands And Energy Substitution In Regional U.S. Manufacturing," Northeastern Journal of Agricultural and Resource Economics, Northeastern Agricultural and Resource Economics Association, vol. 15(1), pages 1-14, April.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

    Sorry, no citations of working papers recorded.

Articles

  1. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.

    Cited by:

    1. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    2. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977-2007," Applied Energy, Elsevier, vol. 88(4), pages 1377-1385, April.
    3. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
    4. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    5. Chen, Shiyi, 2013. "What is the potential impact of a taxation system reform on carbon abatement and industrial growth in China?," Economic Systems, Elsevier, vol. 37(3), pages 369-386.
    6. Agnolucci, Paolo & Arvanitopoulos, Theodoros, 2019. "Industrial characteristics and air emissions: Long-term determinants in the UK manufacturing sector," Energy Economics, Elsevier, vol. 78(C), pages 546-566.
    7. Asafu-Adjaye, John & Mahadevan, Renuka, 2013. "Implications of CO2 reduction policies for a high carbon emitting economy," Energy Economics, Elsevier, vol. 38(C), pages 32-41.
    8. Vera, Sonia & Sauma, Enzo, 2015. "Does a carbon tax make sense in countries with still a high potential for energy efficiency? Comparison between the reducing-emissions effects of carbon tax and energy efficiency measures in the Chile," Energy, Elsevier, vol. 88(C), pages 478-488.
    9. Weijiang Liu & Yangyang Li & Tingting Liu & Min Liu & Hai Wei, 2021. "How to Promote Low-Carbon Economic Development? A Comprehensive Assessment of Carbon Tax Policy in China," IJERPH, MDPI, vol. 18(20), pages 1-16, October.
    10. Stern, David I., 2009. "Interfuel Substitution: A Meta-Analysis," MPRA Paper 13734, University Library of Munich, Germany.
    11. Koengkan, Matheus & Fuinhas, José Alberto & Kazemzadeh, Emad & Alavijeh, Nooshin Karimi & de Araujo, Saulo Jardim, 2022. "The impact of renewable energy policies on deaths from outdoor and indoor air pollution: Empirical evidence from Latin American and Caribbean countries," Energy, Elsevier, vol. 245(C).
    12. Agnolucci, Paolo & De Lipsis, Vincenzo & Arvanitopoulos, Theodoros, 2017. "Modelling UK sub-sector industrial energy demand," Energy Economics, Elsevier, vol. 67(C), pages 366-374.
    13. Sanderson Abel & Julius Mukarati & Leward Jeke & Pierre Le Roux, 2023. "Carbon Tax and Environmental Quality in South Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 484-488, March.
    14. Mao Xianqiang & Yang Shuqian & Liu Qin, 2013. "The Way to CO2 Emission Reduction and the Co-benefits of Local Air Pollution Control in China's Transportation Sector: A Policy and Economic Analysis," EEPSEA Research Report rr2013036, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2013.
    15. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2008. "CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques," Energy, Elsevier, vol. 33(3), pages 492-499.
    16. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    17. Melike Bildirici & Yasemin Asu Çırpıcı & Özgür Ömer Ersin, 2023. "Effects of Technology, Energy, Monetary, and Fiscal Policies on the Relationship between Renewable and Fossil Fuel Energies and Environmental Pollution: Novel NBARDL and Causality Analyses," Sustainability, MDPI, vol. 15(20), pages 1-27, October.
    18. Wang, Ailun & Lin, Boqiang, 2020. "Structural optimization and carbon taxation in China's commercial sector," Energy Policy, Elsevier, vol. 140(C).
    19. Xin-gang, Zhao & Ling, Wu & Ying, Zhou, 2020. "How to achieve incentive regulation under renewable portfolio standards and carbon tax policy? A China's power market perspective," Energy Policy, Elsevier, vol. 143(C).
    20. Jian Wang & Libing Chi & Xiaowei Hu & Hongfei Zhou, 2014. "Urban Traffic Congestion Pricing Model with the Consideration of Carbon Emissions Cost," Sustainability, MDPI, vol. 6(2), pages 1-16, February.
    21. Bernstein, Ronald & Madlener, Reinhard, 2015. "Short- and long-run electricity demand elasticities at the subsectoral level: A cointegration analysis for German manufacturing industries," Energy Economics, Elsevier, vol. 48(C), pages 178-187.
    22. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.
    23. Sharimakin, Akinsehinwa, 2019. "Measuring the energy input substitution and output effects of energy price changes and the implications for the environment," Energy Policy, Elsevier, vol. 133(C).
    24. Yang, Mian & Fan, Ying & Yang, Fuxia & Hu, Hui, 2014. "Regional disparities in carbon dioxide reduction from China's uniform carbon tax: A perspective on interfactor/interfuel substitution," Energy, Elsevier, vol. 74(C), pages 131-139.
    25. Runqing Zhu & Boqiang Lin, 2022. "How Does the Carbon Tax Influence the Energy and Carbon Performance of China’s Mining Industry?," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    26. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    27. Yang, Qiuyue & Gao, Da & Song, Deyong & Li, Yi, 2021. "Environmental regulation, pollution reduction and green innovation: The case of the Chinese Water Ecological Civilization City Pilot policy," Economic Systems, Elsevier, vol. 45(4).
    28. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    29. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
    30. Sharimakin, Akinsehinwa & Glass, Anthony J. & Saal, David S. & Glass, Karligash, 2018. "Dynamic multilevel modelling of industrial energy demand in Europe," Energy Economics, Elsevier, vol. 74(C), pages 120-130.
    31. Hammoudeh, Shawkat & Mokni, Khaled & Ben-Salha, Ousama & Ajmi, Ahdi Noomen, 2021. "Distributional predictability between oil prices and renewable energy stocks: Is there a role for the COVID-19 pandemic?," Energy Economics, Elsevier, vol. 103(C).
    32. Yu, Min & Cruz, Jose M. & Li, Dong Michelle, 2019. "The sustainable supply chain network competition with environmental tax policies," International Journal of Production Economics, Elsevier, vol. 217(C), pages 218-231.
    33. Juhriyansyah Dalle & Atma Hayat & A. Karim & Satria Tirtayasa & Emilda Sulasmi & Indra Prasetia, 2021. "The Influence of Accounting Information System and Energy Consumption on Carbon Emission in the Textile Industry of Indonesia: Mediating Role of the Supply Chain Process," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 536-543.
    34. Paula Pereda & Andrea Lucchesi, Carolina Policarpo Garcia, Bruno Toni Palialol, 2019. "Neutral carbon tax and environmental targets in Brazil," Working Papers, Department of Economics 2019_02, University of São Paulo (FEA-USP).
    35. Polemis, Michael. L., 2007. "Modeling industrial energy demand in Greece using cointegration techniques," Energy Policy, Elsevier, vol. 35(8), pages 4039-4050, August.
    36. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2014. "Substitute or complement? Assessing renewable and non-renewable energy in OCED countries," Working Papers SDES-2014-8, Kochi University of Technology, School of Economics and Management, revised Oct 2014.
    37. Tan, Xiujie & Wang, Banban & Wei, Jie & Taghizadeh-Hesary, Farhad, 2023. "The role of carbon pricing in achieving energy transition in the Post-COP26 era: Evidence from China's industrial energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    38. Bin Wu & Wanying Huang & Pengfei Liu, 2017. "Carbon Reduction Strategies Based on an NW Small-World Network with a Progressive Carbon Tax," Sustainability, MDPI, vol. 9(10), pages 1-22, September.
    39. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    40. Juanjuan Tian & Xiaoqian Song & Jinsuo Zhang, 2022. "Spatial-Temporal Pattern and Driving Factors of Carbon Efficiency in China: Evidence from Panel Data of Urban Governance," Energies, MDPI, vol. 15(7), pages 1-24, March.
    41. Han, Aiping & Ge, Jianping & Lei, Yalin, 2015. "An adjustment in regulation policies and its effects on market supply: Game analysis for China’s rare earths," Resources Policy, Elsevier, vol. 46(P2), pages 30-42.
    42. Li, Jianglong & Sun, Chuanwang, 2018. "Towards a low carbon economy by removing fossil fuel subsidies?," China Economic Review, Elsevier, vol. 50(C), pages 17-33.
    43. He, Senyu & Yin, Jianhua & Zhang, Bin & Wang, Zhaohua, 2018. "How to upgrade an enterprise’s low-carbon technologies under a carbon tax: The trade-off between tax and upgrade fee," Applied Energy, Elsevier, vol. 227(C), pages 564-573.
    44. He, Pinglin & Zhang, Shuhao & Wang, Lei & Ning, Jing, 2023. "Will environmental taxes help to mitigate climate change? A comparative study based on OECD countries," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1440-1464.
    45. Younes Ahmadi & Akio Yamazaki & Philippe Kabore, 2022. "How Do Carbon Taxes Affect Emissions? Plant-Level Evidence from Manufacturing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(2), pages 285-325, June.
    46. Anjos, Miguel F. & Feijoo, Felipe & Sankaranarayanan, Sriram, 2022. "A multinational carbon-credit market integrating distinct national carbon allowance strategies," Applied Energy, Elsevier, vol. 319(C).
    47. Assaad Ghazouani & Wanjun Xia & Mehdi Ben Jebli & Umer Shahzad, 2020. "Exploring the Role of Carbon Taxation Policies on CO 2 Emissions: Contextual Evidence from Tax Implementation and Non-Implementation European Countries," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    48. Mardones, Cristian & Flores, Belén, 2018. "Effectiveness of a CO2 tax on industrial emissions," Energy Economics, Elsevier, vol. 71(C), pages 370-382.

  2. Andriana Vlachou, 2005. "Environmental regulation: a value-theoretic and class-based analysis," Cambridge Journal of Economics, Oxford University Press, vol. 29(4), pages 577-599, July.

    Cited by:

    1. Singh, Pritam & Singh, Nadia, 2019. "Political economy of bioenergy transitions in developing countries: A case study of Punjab, India," World Development, Elsevier, vol. 124(C), pages 1-1.
    2. Timothy Swanson et al., 2012. "Cost-effective attainment of Environmental Compliance: Governance Solutions for Environmental Objectives in the Peoples Republic of China," CIES Research Paper series 13-2012, Centre for International Environmental Studies, The Graduate Institute.
    3. Charalampos Konstantinidis, 2018. "Capitalism in Green Disguise: The Political Economy of Organic Farming in the European Union," Review of Radical Political Economics, Union for Radical Political Economics, vol. 50(4), pages 830-852, December.
    4. Hovardas, Tasos, 2016. "Two paradoxes with one stone: A critical reading of ecological modernization," Ecological Economics, Elsevier, vol. 130(C), pages 1-7.

  3. Vassos, Spyros & Vlachou, Andriana, 1997. "Investigating strategies to reduce CO2 emissions from the electricity sector: the case of Greece," Energy Policy, Elsevier, vol. 25(3), pages 327-336, February.

    Cited by:

    1. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.
    2. Dagoumas, A.S. & Panapakidis, I.P. & Papagiannis, G.K. & Dokopoulos, P.S., 2008. "Post-Kyoto energy consumption strategies for the Greek interconnected electric system," Energy Policy, Elsevier, vol. 36(6), pages 1980-1999, June.
    3. Dagoumas, A.S. & Kalaitzakis, E. & Papagiannis, G.K. & Dokopoulos, P.S., 2007. "A post-Kyoto analysis of the Greek electric sector," Energy Policy, Elsevier, vol. 35(3), pages 1551-1563, March.
    4. Psomopoulos, C.S. & Skoula, I. & Karras, C. & Chatzimpiros, A. & Chionidis, M., 2010. "Electricity savings and CO2 emissions reduction in buildings sector: How important the network losses are in the calculation?," Energy, Elsevier, vol. 35(1), pages 485-490.
    5. Kalampalikas, Nikolaos G. & Pilavachi, Petros A., 2010. "A model for the development of a power production system in Greece, Part I: Where RES do not meet EU targets," Energy Policy, Elsevier, vol. 38(11), pages 6499-6513, November.
    6. Voumvoulakis, Emmanouil & Asimakopoulou, Georgia & Danchev, Svetoslav & Maniatis, George & Tsakanikas, Aggelos, 2012. "Large scale integration of intermittent renewable energy sources in the Greek power sector," Energy Policy, Elsevier, vol. 50(C), pages 161-173.

  4. Vlachou, Andriana & Vassos, Spyros & Andrikopoulos, Andreas, 1996. "Energy and environment: Reducing CO2 emissions from the electric power industry," Journal of Policy Modeling, Elsevier, vol. 18(4), pages 343-376, August.

    Cited by:

    1. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
    2. Gallagher, Paul W. & Shapouri, Hosein & Price, Jeffrey, 2006. "Welfare maximization, pricing, and allocation with a product performance or environmental quality standard: Illustration for the gasoline and additives market," ISU General Staff Papers 200606010700001452, Iowa State University, Department of Economics.
    3. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.
    4. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2008. "CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques," Energy, Elsevier, vol. 33(3), pages 492-499.
    5. Nicholas Lee & Hsiang-Jane Su & Ming-Chin Lin, 2018. "Electricity Consumption and Green Mortgage: New Insights into the Threshold Cointegration Relationship," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 39-46.
    6. Polemis, Michael. L., 2007. "Modeling industrial energy demand in Greece using cointegration techniques," Energy Policy, Elsevier, vol. 35(8), pages 4039-4050, August.
    7. Acheampong, Alex O. & Dzator, Janet & Savage, David A., 2021. "Renewable energy, CO2 emissions and economic growth in sub-Saharan Africa: Does institutional quality matter?," Journal of Policy Modeling, Elsevier, vol. 43(5), pages 1070-1093.
    8. Dagoumas, A.S. & Kalaitzakis, E. & Papagiannis, G.K. & Dokopoulos, P.S., 2007. "A post-Kyoto analysis of the Greek electric sector," Energy Policy, Elsevier, vol. 35(3), pages 1551-1563, March.
    9. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    10. Kunsch, P. & Springael, J., 2008. "Simulation with system dynamics and fuzzy reasoning of a tax policy to reduce CO2 emissions in the residential sector," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1285-1299, March.
    11. Gallagher, Paul W. & Shapouri, Hosein & Price, Jeffrey, 2006. "Welfare maximization, pricing, and allocation with a product performance or environmental quality standard: Illustration for the gasoline and additives market," International Journal of Production Economics, Elsevier, vol. 101(2), pages 230-245, June.
    12. Vassos, Spyros & Vlachou, Andriana, 1997. "Investigating strategies to reduce CO2 emissions from the electricity sector: the case of Greece," Energy Policy, Elsevier, vol. 25(3), pages 327-336, February.
    13. Psomopoulos, C.S. & Skoula, I. & Karras, C. & Chatzimpiros, A. & Chionidis, M., 2010. "Electricity savings and CO2 emissions reduction in buildings sector: How important the network losses are in the calculation?," Energy, Elsevier, vol. 35(1), pages 485-490.
    14. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    15. Basil M. H. Sharp, 2001. "Sustainable Development: Environment and Economic Framework Integration," Treasury Working Paper Series 01/27, New Zealand Treasury.
    16. Sharif, Arshian & Brahim, Mariem & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "Analysis of the spillover effects between green economy, clean and dirty cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).

  5. Efthymoglou, Prodromos G. & Vlachou, Andriana S., 1989. "Productivity in the vertically integrated system of the Greek Electricity Utility, 1970-1985," Energy Economics, Elsevier, vol. 11(2), pages 119-126, April.

    Cited by:

    1. Mohammed Al-Mahish, 2017. "Economies of Scale, Technical Change, and Total Factor Productivity Growth of the Saudi Electricity Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 86-94.
    2. Vlachou, Andriana & Vassos, Spyros & Andrikopoulos, Andreas, 1996. "Energy and environment: Reducing CO2 emissions from the electric power industry," Journal of Policy Modeling, Elsevier, vol. 18(4), pages 343-376, August.

  6. Vlachou, A. S. & Samouilidis, E. J., 1986. "Interfuel substitution : Results from several sectors of the Greek economy," Energy Economics, Elsevier, vol. 8(1), pages 39-45, January.

    Cited by:

    1. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.
    2. Stern, David I., 2009. "Interfuel Substitution: A Meta-Analysis," MPRA Paper 13734, University Library of Munich, Germany.
    3. Conniffe, Denis & Scott, Susan, 1990. "Energy Elasticities: Responsiveness of Demands for Fuels to Income and Price Changes," Research Series, Economic and Social Research Institute (ESRI), number GRS149, August.
    4. Caloghirou, Yannis D. & Mourelatos, Alexi G. & Thompson, Henry, 1997. "Industrial energy substitution during the 1980s in the Greek economy," Energy Economics, Elsevier, vol. 19(4), pages 476-491, October.
    5. Christopoulos, Dimitris K., 2000. "The demand for energy in Greek manufacturing," Energy Economics, Elsevier, vol. 22(5), pages 569-586, October.
    6. Opeyemi Bello, Mufutau & Adebola Solarin, Sakiru & Yee Yen, Yuen, 2018. "Interfuel Substitution, Hydroelectricity Consumption and CO2 Emissions Mitigation in Malaysia: Evidence from a Transcendental Logarithm (trans-log) Cost Function Framework," Working Papers 4, Department of Economics, University of Ilorin.
    7. Polemis, Michael. L., 2007. "Modeling industrial energy demand in Greece using cointegration techniques," Energy Policy, Elsevier, vol. 35(8), pages 4039-4050, August.
    8. Mufutau Opeyemi, Bello, 2021. "Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy," Energy, Elsevier, vol. 228(C).
    9. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2016. "Renewable vs non-renewable electricity and the industrial production nexus: Evidence from an ARDL bounds test approach for Greece," Renewable Energy, Elsevier, vol. 96(PA), pages 645-655.
    10. Shahiduzzaman, M.D. & Alam, Khorshed, 2014. "Interfuel substitution in Australia: a way forward to achieve environmental sustainability," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
    11. Yi, Feng, 2000. "Dynamic energy-demand models: a comparison," Energy Economics, Elsevier, vol. 22(2), pages 285-297, April.
    12. Vlachou, Andriana & Vassos, Spyros & Andrikopoulos, Andreas, 1996. "Energy and environment: Reducing CO2 emissions from the electric power industry," Journal of Policy Modeling, Elsevier, vol. 18(4), pages 343-376, August.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Andriana Vlachou should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.