IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v11y2020i01ns2010007820500049.html
   My bibliography  Save this article

The Critical Role Of Conversion Cost And Comparative Advantage In Modeling Agricultural Land Use Change

Author

Listed:
  • XIN ZHAO

    (Joint Global Change Research Institute, Pacific Northwest National Laboratory, 5825 University Research Ct, College Park, MD 20740, USA)

  • KATHERINE V. CALVIN

    (Joint Global Change Research Institute, Pacific Northwest National Laboratory, 5825 University Research Ct, College Park, MD 20740, USA)

  • MARSHALL A. WISE

    (Joint Global Change Research Institute, Pacific Northwest National Laboratory, 5825 University Research Ct, College Park, MD 20740, USA)

Abstract

The difference in land use modeling approaches is an important uncertain factor in evaluating future climate scenarios in global economic models. We compare five widely used land use modeling approaches: constrained optimization, constant elasticity of transformation (CET), the additive form of constant elasticity of transformation (ACET), logit, and Ricardian. We demonstrate that the approaches differ not only by the extent of parameter uses but also by the definition of conversion cost and the consideration of comparative advantage implied by land heterogeneity. We develop a generalized hybrid approach that incorporates ACET/logit and Ricardian to account for both conversion cost and comparative advantage. We use this hybrid approach to estimate future climate impacts on agriculture. We find a welfare loss of about 0.38–0.46% of the global GDP. We demonstrate that ignoring land heterogeneity or land conversion costs underestimates climate impacts on agricultural production and welfare.

Suggested Citation

  • Xin Zhao & Katherine V. Calvin & Marshall A. Wise, 2020. "The Critical Role Of Conversion Cost And Comparative Advantage In Modeling Agricultural Land Use Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-44, February.
  • Handle: RePEc:wsi:ccexxx:v:11:y:2020:i:01:n:s2010007820500049
    DOI: 10.1142/S2010007820500049
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007820500049
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007820500049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Huey-Lin & Hertel, Thomas W. & Sohngen, Brent & Ramankutty, Navin, 2005. "Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation," Technical Papers 283423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Jonathan Eaton & Samuel Kortum, 2012. "Putting Ricardo to Work," Journal of Economic Perspectives, American Economic Association, vol. 26(2), pages 65-90, Spring.
    3. Hermann Lotze‐Campen & Christoph Müller & Alberte Bondeau & Stefanie Rost & Alexander Popp & Wolfgang Lucht, 2008. "Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach," Agricultural Economics, International Association of Agricultural Economists, vol. 39(3), pages 325-338, November.
    4. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    5. Golub, Alla & Hertel, Thomas & Taheripour, Farzad & Tyner, Wally, 2010. "Modeling Biofuels Policies in General Equilibrium: Insights, Pitfalls and Opportunities," GTAP Working Papers 3406, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    6. Xin Zhao & Dominique Y van der Mensbrugghe & Roman M. Keeney & Wallace E. Tyner, 2021. "Improving the Way Land Use Change is Handled in Economic Models," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 15, pages 467-515, World Scientific Publishing Co. Pte. Ltd..
    7. Ruben N. Lubowski & Andrew J. Plantinga & Robert N. Stavins, 2008. "What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions," Land Economics, University of Wisconsin Press, vol. 84(4), pages 529-550.
    8. Krugman, Paul, 1980. "Scale Economies, Product Differentiation, and the Pattern of Trade," American Economic Review, American Economic Association, vol. 70(5), pages 950-959, December.
    9. Arnaud Costinot & Dave Donaldson & Jonathan Vogel & Iván Werning, 2015. "Comparative Advantage and Optimal Trade Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(2), pages 659-702.
    10. Alan V. Deardorff, 2011. "The General Validity of the Law of Comparative Advantage," World Scientific Book Chapters, in: Robert M Stern (ed.), Comparative Advantage, Growth, And The Gains From Trade And Globalization A Festschrift in Honor of Alan V Deardorff, chapter 10, pages 73-90, World Scientific Publishing Co. Pte. Ltd..
    11. Ruiqing Miao & Madhu Khanna & Haixiao Huang, 2016. "Responsiveness of Crop Yield and Acreage to Prices and Climate," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 191-211.
    12. Clarke, John F. & Edmonds, J. A., 1993. "Modelling energy technologies in a competitive market," Energy Economics, Elsevier, vol. 15(2), pages 123-129, April.
    13. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    14. Baldos, Uris Lantz, 2017. "Development of GTAP version 9 Land Use and Land Cover database for years 2004, 2007 and 2011," GTAP Research Memoranda 5424, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    15. RICHARD M. Adams & DARIUS M. Adams & JOHN M. Callaway & CHING‐CHENG Chang & BRUCE A. Mccarl, 1993. "Sequestering Carbon On Agricultural Land: Social Cost And Impacts On Timber Markets," Contemporary Economic Policy, Western Economic Association International, vol. 11(1), pages 76-87, January.
    16. Daniel McFadden, 2001. "Economic Choices," American Economic Review, American Economic Association, vol. 91(3), pages 351-378, June.
    17. Arnaud Costinot & Dave Donaldson, 2012. "Ricardo's Theory of Comparative Advantage: Old Idea, New Evidence," American Economic Review, American Economic Association, vol. 102(3), pages 453-458, May.
    18. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    19. Gibbs, Holly & Yui, Sahoko & Plevin, Richard, 2014. "New Estimates of Soil and Biomass Carbon Stocks for Global Economic Models," Technical Papers 283432, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Nathan P. Hendricks & Aaron Smith & Daniel A. Sumner, 2014. "Crop Supply Dynamics and the Illusion of Partial Adjustment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1469-1491.
    21. Marshall Wise & Kate Calvin & Page Kyle & Patrick Luckow & Jae Edmonds, 2014. "Economic And Physical Modeling Of Land Use In Gcam 3.0 And An Application To Agricultural Productivity, Land, And Terrestrial Carbon," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-22.
    22. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    23. Frank van Tongeren & Robert Koopman & Stephen Karingi & John Reilly & Joseph Francois, 2021. "Back to the Future: A 25-Year Retrospective on GTAP and the Shaping of a New Agenda," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 3, pages 41-93, World Scientific Publishing Co. Pte. Ltd..
    24. Mariano, Marc Jim M. & Giesecke, James A., 2014. "The macroeconomic and food security implications of price interventions in the Philippine rice market," Economic Modelling, Elsevier, vol. 37(C), pages 350-361.
    25. Arnaud Costinot & Dave Donaldson & Cory Smith, 2016. "Evolving Comparative Advantage and the Impact of Climate Change in Agricultural Markets: Evidence from 1.7 Million Fields around the World," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 205-248.
    26. Wise, Marshall & Hodson, Elke L. & Mignone, Bryan K. & Clarke, Leon & Waldhoff, Stephanie & Luckow, Patrick, 2015. "An approach to computing marginal land use change carbon intensities for bioenergy in policy applications," Energy Economics, Elsevier, vol. 50(C), pages 337-347.
    27. Bouët, Antoine & Dimaranan, Betina V. & Valin, Hugo, 2010. "Modeling the global trade and environmental impacts of biofuel policies," IFPRI discussion papers 1018, International Food Policy Research Institute (IFPRI).
    28. Alla A. Golub & Thomas W. Hertel, 2012. "Modeling Land-Use Change Impacts Of Biofuels In The Gtap-Bio Framework," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-30.
    29. James A. Giesecke & Nhi Hoang Tran & Erwin L. Corong & Steven Jaffee, 2013. "Rice Land Designation Policy in Vietnam and the Implications of Policy Reform for Food Security and Economic Welfare," Journal of Development Studies, Taylor & Francis Journals, vol. 49(9), pages 1202-1218, September.
    30. Gouel, Christophe & Laborde, David, 2021. "The crucial role of domestic and international market-mediated adaptation to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    31. Md Zabid Iqbal & Bruce A. Babcock, 2018. "Global growing‐area elasticities of key agricultural crops estimated using dynamic heterogeneous panel methods," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 681-690, November.
    32. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    33. Gibbs, Holly & Sahoko Yui & Richard Plevin, 2014. "New Estimates of Soil and Biomass Carbon Stocks for Global Economic Models," GTAP Technical Papers 4344, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    34. Shinichiro Fujimori & Toshichika Iizumi & Tomoko Hasegawa & Jun’ya Takakura & Kiyoshi Takahashi & Yasuaki Hijioka, 2018. "Macroeconomic Impacts of Climate Change Driven by Changes in Crop Yields," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    35. Jonathan Eaton & Samuel Kortum, 2002. "Technology, Geography, and Trade," Econometrica, Econometric Society, vol. 70(5), pages 1741-1779, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Chen & Ruijie Shi & Geng Sun & Ya Guo & Min Deng & Xiuyuan Zhang, 2023. "Simulation-Based Optimization of the Urban Thermal Environment through Local Climate Zones Reorganization in Changsha City, China with the FLUS Model," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    2. Sampedro, Jon & Kyle, Page & Ramig, Christopher W. & Tanner, Daniel & Huster, Jonathan E. & Wise, Marshall A., 2021. "Dynamic linking of upstream energy and freight demands for bio and fossil energy pathways in the Global Change Analysis Model," Applied Energy, Elsevier, vol. 302(C).
    3. Zhao, Xin & Calvin, Katherine V. & Wise, Marshall A. & Iyer, Gokul, 2021. "The role of global agricultural market integration in multiregional economic modeling: Using hindcast experiments to validate an Armington model," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 1-17.
    4. Ferreira Balieiro, Samuel, 2023. "Modeling regional supply responses using farmlevel economic data and a biophysical model: a case study on Brazilian land-use change," Thünen Report 334261, Johann Heinrich von Thünen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries.
    5. Balieiro, Samuel, 2023. "Modeling regional supply responses using farm-level economic data and a biophysical model: A case study on Brazilian land-use change," Thünen Reports 106, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    6. Qu, Yang & Swales, J. Kim & Hooper, Tara & Austen, Melanie C. & Wang, Xinhao & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Economic trade-offs in marine resource use between offshore wind farms and fisheries in Scottish waters," Energy Economics, Elsevier, vol. 125(C).
    7. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xin & Calvin, Katherine & Wise, Marshall, 2020. "The critical role of conversion cost and comparative advantage in modeling agricultural land use change," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304204, Agricultural and Applied Economics Association.
    2. Xin Zhao & Dominique Y van der Mensbrugghe & Roman M. Keeney & Wallace E. Tyner, 2021. "Improving the Way Land Use Change is Handled in Economic Models," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 15, pages 467-515, World Scientific Publishing Co. Pte. Ltd..
    3. Zhao, Xin & Calvin, Katherine V. & Wise, Marshall A. & Iyer, Gokul, 2021. "The role of global agricultural market integration in multiregional economic modeling: Using hindcast experiments to validate an Armington model," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 1-17.
    4. Gouel, Christophe & Laborde, David, 2021. "The crucial role of domestic and international market-mediated adaptation to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    5. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    6. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    7. Nelson Villoria & Rachael Garrett & Florian Gollnow & Kimberly Carlson, 2022. "Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    9. Shon M Ferguson & Johan Gars, 2020. "Measuring the impact of agricultural production shocks on international trade flows," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1094-1132.
    10. Kohler Wilhelm & Jung Benjamin, 2017. "Wie vorteilhaft ist internationaler Handel?: Ein neuer Ansatz zur Vermessung der Gewinne," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 18(1), pages 32-55, April.
    11. Santeramo, Fabio Gaetano & Bozzola, Martina & Lamonaca, Emilia, 2020. "Impacts of Climate Change on Global Agri-Food Trade," 2019: Recent Advances in Applied General Equilibrium Modeling: Relevance and Application to Agricultural Trade Analysis, December 8-10, 2019, Washington, DC 339375, International Agricultural Trade Research Consortium.
    12. Nelson Lind & Natalia Ramondo, 2023. "Trade with Correlation," American Economic Review, American Economic Association, vol. 113(2), pages 317-353, February.
    13. Heitor Pellegrina & Sebastian Sotelo, 2019. "Migration, Specialization and Trade: Evidence from the Brazilian March to the West," 2019 Meeting Papers 863, Society for Economic Dynamics.
    14. Cui, X., 2018. "Adaptation to Climate Change: Evidence from US Acreage Response," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277094, International Association of Agricultural Economists.
    15. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    16. Santiago Guerrero & Ben Henderson & Hugo Valin & Charlotte Janssens & Petr Havlik & Amanda Palazzo, 2022. "The impacts of agricultural trade and support policy reform on climate change adaptation and environmental performance: A model-based analysis," OECD Food, Agriculture and Fisheries Papers 180, OECD Publishing.
    17. Zhao, Xin & van der Mensbrugghe, Dominique & Tyner, Wally, 2017. "Modeling land physically in CGE models: new insights on intensive and extensive margins," Conference papers 332816, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Frank van Tongeren & Robert Koopman & Stephen Karingi & John Reilly & Joseph Francois, 2021. "Back to the Future: A 25-Year Retrospective on GTAP and the Shaping of a New Agenda," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 3, pages 41-93, World Scientific Publishing Co. Pte. Ltd..
    19. Zhao, Xin & Van Der Mensbrugghe, Dominique & Tyner, Wallace E., 2017. "Modeling land physically in CGE models: new insights on intensive and extensive margins," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258363, Agricultural and Applied Economics Association.
    20. Heerman, Kari E.R., 2020. "Technology, ecology and agricultural trade," Journal of International Economics, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:11:y:2020:i:01:n:s2010007820500049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.