IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v28y2023i3p3370-3385.html
   My bibliography  Save this article

Role of foreign direct investment in decomposing of scale and technique effects on China's energy consumption

Author

Listed:
  • Muhammad Shahbaz
  • Avik Sinha
  • Shabbir Ahmad
  • Zhilun Jiao
  • Zhaohua Wang

Abstract

This study contributes to the literature of energy economics by divulging the nature of scale and technique effects on energy consumption, considering foreign direct investment (FDI) as one of considerable factors of energy demand. The Chinese provincial data over the period of 2000–2018 are used for empirical analysis. In doing so, we have applied the Westerlund and Edgerton cointegration test using cross‐sectional dependence and structural breaks, and bootstrapped quantile regression to decompose scale and technique effects. The empirical results show the presence of cointegrating association among the model parameters, in the presence of cross‐sectional dependence and structural breaks. The quantile regression results indicate that the scale effect exerted by FDI is negative at lower quantiles of energy consumption, and positive at upper quantiles. Moreover, scale and technique effects exerted by FDI are positive and negative, respectively, at lower quantiles of energy consumption, and negative and positive, respectively, at higher quantiles. The results of this study are expected to help in designing the energy policies in China, keeping the quantum of energy consumption at various provinces in mind, and, thereby, ensuring the sustainability in energy consumption.

Suggested Citation

  • Muhammad Shahbaz & Avik Sinha & Shabbir Ahmad & Zhilun Jiao & Zhaohua Wang, 2023. "Role of foreign direct investment in decomposing of scale and technique effects on China's energy consumption," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3370-3385, July.
  • Handle: RePEc:wly:ijfiec:v:28:y:2023:i:3:p:3370-3385
    DOI: 10.1002/ijfe.2597
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2597
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chang, Ching-Chih, 2010. "A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 87(11), pages 3533-3537, November.
    2. Hao, Yu & Wang, Ling'ou & Zhu, Lingyun & Ye, Minjie, 2018. "The dynamic relationship between energy consumption, investment and economic growth in China's rural area: New evidence based on provincial panel data," Energy, Elsevier, vol. 154(C), pages 374-382.
    3. Muhammad Shahbaz & Amatul Razzaq Chaudhary & Syed Jawad Hussain Shahzad, 2020. "Is energy consumption sensitive to foreign capital inflows and currency devaluation in Pakistan?," Applied Economics, Taylor & Francis Journals, vol. 50(52), pages 5641-5658, June.
    4. Muhammad Shahbaz & Mohammad Mafizur Rahman, 2012. "The Dynamic of Financial Development, Imports, Foreign Direct Investment and Economic Growth: Cointegration and Causality Analysis in Pakistan," Global Business Review, International Management Institute, vol. 13(2), pages 201-219, June.
    5. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    6. Joakim Westerlund & David L. Edgerton, 2008. "A Simple Test for Cointegration in Dependent Panels with Structural Breaks," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(5), pages 665-704, October.
    7. Holtz-Eakin, Douglas & Selden, Thomas M., 1995. "Stoking the fires? CO2 emissions and economic growth," Journal of Public Economics, Elsevier, vol. 57(1), pages 85-101, May.
    8. Gozgor, Giray & Lau, Chi Keung Marco & Lu, Zhou, 2018. "Energy consumption and economic growth: New evidence from the OECD countries," Energy, Elsevier, vol. 153(C), pages 27-34.
    9. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    10. Susmita Dasgupta & Benoit Laplante & Hua Wang & David Wheeler, 2002. "Confronting the Environmental Kuznets Curve," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 147-168, Winter.
    11. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    12. Lucas, Robert E.B. & Wheeler, David & Hettige, Hemamala, 1992. "Economic development, environmental regulation, and the international migration of toxic industrial pollution : 1960-88," Policy Research Working Paper Series 1062, The World Bank.
    13. Xiao-Ying Dong & Qiying Ran & Yu Hao, 2019. "On the nonlinear relationship between energy consumption and economic development in China: new evidence from panel data threshold estimations," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1837-1857, July.
    14. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    15. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    16. Panayotou, Theodore, 1997. "Demystifying the environmental Kuznets curve: turning a black box into a policy tool," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 465-484, November.
    17. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    18. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    19. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    20. Dinda, Soumyananda, 2005. "A theoretical basis for the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 53(3), pages 403-413, May.
    21. Shahbaz, Muhammad & Gozgor, Giray & Adom, Philip Kofi & Hammoudeh, Shawkat, 2019. "The technical decomposition of carbon emissions and the concerns about FDI and trade openness effects in the United States," International Economics, Elsevier, vol. 159(C), pages 56-73.
    22. Sinha, Avik & Shahbaz, Muhammad & Sengupta, Tuhin, 2018. "Renewable Energy Policies and Contradictions in Causality: A case of Next 11 Countries," MPRA Paper 87542, University Library of Munich, Germany, revised 17 Jun 2018.
    23. Stern, David I. & Common, Michael S. & Barbier, Edward B., 1996. "Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development," World Development, Elsevier, vol. 24(7), pages 1151-1160, July.
    24. Cole, Matthew A., 2006. "Does trade liberalization increase national energy use?," Economics Letters, Elsevier, vol. 92(1), pages 108-112, July.
    25. Tetsuya Tsurumi & Shunsuke Managi, 2010. "Decomposition of the environmental Kuznets curve: scale, technique, and composition effects," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 11(1), pages 19-36, February.
    26. Sinha, Avik & Gupta, Monika & Shahbaz, Muhammad & Sengupta, Tuhin, 2019. "Impact of Corruption in Public Sector on Environmental Quality: Implications for Sustainability in BRICS and Next 11 Countries," MPRA Paper 94357, University Library of Munich, Germany, revised 05 Jun 2019.
    27. Yuan, Jia-Hai & Kang, Jian-Gang & Zhao, Chang-Hong & Hu, Zhao-Guang, 2008. "Energy consumption and economic growth: Evidence from China at both aggregated and disaggregated levels," Energy Economics, Elsevier, vol. 30(6), pages 3077-3094, November.
    28. Stern, David I. & Common, Michael S., 2001. "Is There an Environmental Kuznets Curve for Sulfur?," Journal of Environmental Economics and Management, Elsevier, vol. 41(2), pages 162-178, March.
    29. Apergis, Nicholas & Payne, James E., 2009. "CO2 emissions, energy usage, and output in Central America," Energy Policy, Elsevier, vol. 37(8), pages 3282-3286, August.
    30. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    31. Zheng, Wei & Walsh, Patrick Paul, 2019. "Economic growth, urbanization and energy consumption — A provincial level analysis of China," Energy Economics, Elsevier, vol. 80(C), pages 153-162.
    32. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    33. Herwartz, H. & Siedenburg, F., 2008. "Homogenous panel unit root tests under cross sectional dependence: Finite sample modifications and the wild bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 137-150, September.
    34. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
    35. Sinha, Avik & Shah, Muhammad Ibrahim & Sengupta, Tuhin & Jiao, Zhilun, 2020. "Analyzing Technology-Emissions Association in Top-10 Polluted MENA Countries: How to Ascertain Sustainable Development by Quantile Modeling Approach," MPRA Paper 100253, University Library of Munich, Germany, revised 2020.
    36. Sharif, Arshian & Iqbal Godil, Danish & Xu, Bingjie & Sinha, Avik & Abdul Rehman Khan, Syed & Jermsittiparsert, Kittisak, 2020. "Revisiting the Role of Tourism and Globalization in Environmental Degradation in China: Fresh Insights from the Quantile ARDL Approach," MPRA Paper 101156, University Library of Munich, Germany, revised 2020.
    37. Yuan, Jiahai & Zhao, Changhong & Yu, Shunkun & Hu, Zhaoguang, 2007. "Electricity consumption and economic growth in China: Cointegration and co-feature analysis," Energy Economics, Elsevier, vol. 29(6), pages 1179-1191, November.
    38. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
    39. Stern, David I., 2002. "Explaining changes in global sulfur emissions: an econometric decomposition approach," Ecological Economics, Elsevier, vol. 42(1-2), pages 201-220, August.
    40. Liobikienė, Genovaitė & Butkus, Mindaugas, 2019. "Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions," Renewable Energy, Elsevier, vol. 132(C), pages 1310-1322.
    41. Al-mulali, Usama & Foon Tang, Chor, 2013. "Investigating the validity of pollution haven hypothesis in the gulf cooperation council (GCC) countries," Energy Policy, Elsevier, vol. 60(C), pages 813-819.
    42. Chai, Jian & Du, Mengfan & Liang, Ting & Sun, Xiaojie Christine & Yu, Ji & Zhang, Zhe George, 2019. "Coal consumption in China: How to bend down the curve?," Energy Economics, Elsevier, vol. 80(C), pages 38-47.
    43. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    44. Lee, Jung Wan, 2013. "The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth," Energy Policy, Elsevier, vol. 55(C), pages 483-489.
    45. Peter C. B. Phillips & Donggyu Sul, 2003. "Dynamic panel estimation and homogeneity testing under cross section dependence *," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 217-259, June.
    46. Doytch, Nadia & Narayan, Seema, 2016. "Does FDI influence renewable energy consumption? An analysis of sectoral FDI impact on renewable and non-renewable industrial energy consumption," Energy Economics, Elsevier, vol. 54(C), pages 291-301.
    47. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    48. Schmidt, Peter & Phillips, C B Peter, 1992. "LM Tests for a Unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 257-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muntasir Murshed & Ilhan Ozturk & Avik Sinha & Mohammad Mahtab Alam, 2024. "Achieving environmental sustainability through renewable energy transition in the Next Eleven countries: the importance of establishing sound democratic governance," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz, Muhammad & Sinha, Avik & Ahmad, Shabbir & Jiao, Zhilun & Wang, Zhaohua, 2021. "Role of FDI in Decomposing of Scale and Technique Effects on China’s Energy Consumption," MPRA Paper 111231, University Library of Munich, Germany, revised 2021.
    2. Shahbaz, Muhammad & Sinha, Avik & Kontoleon, Andreas, 2020. "Decomposing Scale and Technique Effects of Economic Growth on Energy Consumption: Fresh Evidence in Developing Economies," MPRA Paper 102111, University Library of Munich, Germany, revised 27 Jul 2020.
    3. Muhammad Shahbaz & Avik Sinha & Andreas Kontoleon, 2022. "Decomposing scale and technique effects of economic growth on energy consumption: Fresh evidence from developing economies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1848-1869, April.
    4. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    5. Duc Khuong Nguyen & Benoît Sévi & Bo Sjö & Gazi Salah Uddin, 2017. "The role of trade openness and investment in examining the energy-growth-pollution nexus: empirical evidence for China and India," Applied Economics, Taylor & Francis Journals, vol. 49(40), pages 4083-4098, August.
    6. Sabrina Auci & Giovanni Trovato, 2018. "The environmental Kuznets curve within European countries and sectors: greenhouse emission, production function and technology," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 895-915, December.
    7. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    8. Roxana Pincheira & Felipe Zuniga, 2021. "Environmental Kuznets curve bibliographic map: a systematic literature review," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 1931-1956, April.
    9. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    10. Stern, David I., 2014. "The Environmental Kuznets Curve: A Primer," Working Papers 249424, Australian National University, Centre for Climate Economics & Policy.
    11. Pascalau, Razvan & Qirjo, Dhimitri, 2017. "TTIP and the Environmental Kuznets Curve," MPRA Paper 80192, University Library of Munich, Germany.
    12. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.
    13. Ranganathan, Shyam & Bali Swain, Ranjula, 2014. "Analysing Mechanisms for Meeting Global Emissions Target - A Dynamical Systems Approach," Working Paper Series 2014:10, Uppsala University, Department of Economics.
    14. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
    15. Shahbaz, Muhammad & Balsalobre-Lorente, Daniel & Sinha, Avik, 2019. "Foreign Direct Investment–CO2 Emissions Nexus in Middle East and North African countries: Importance of Biomass Energy Consumption," MPRA Paper 91729, University Library of Munich, Germany, revised 19 Jan 2019.
    16. Jie He, 2007. "Is the Environmental Kuznets Curve hypothesis valid for developing countries? A survey," Cahiers de recherche 07-03, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    17. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    18. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    19. Bella, Giovanni & Massidda, Carla & Mattana, Paolo, 2014. "The relationship among CO2 emissions, electricity power consumption and GDP in OECD countries," Journal of Policy Modeling, Elsevier, vol. 36(6), pages 970-985.
    20. Zilio, Mariana & Recalde, Marina, 2011. "GDP and environment pressure: The role of energy in Latin America and the Caribbean," Energy Policy, Elsevier, vol. 39(12), pages 7941-7949.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:28:y:2023:i:3:p:3370-3385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.