IDEAS home Printed from https://ideas.repec.org/a/spr/joevec/v29y2019i1d10.1007_s00191-018-0594-0.html
   My bibliography  Save this article

Macroeconomics with heterogeneous agent models: fostering transparency, reproducibility and replication

Author

Listed:
  • Herbert Dawid

    () (Bielefeld University, Universitaetsstr. 25)

  • Philipp Harting

    (Bielefeld University, Universitaetsstr. 25)

  • Sander Hoog

    () (Bielefeld University, Universitaetsstr. 25)

  • Michael Neugart

    () (Technische Universität Darmstadt)

Abstract

This paper provides a detailed description of the Eurace@Unibi model, which has been developed as a versatile tool for macroeconomic analysis and policy experiments. The model explicitly incorporates the decentralized interaction of heterogeneous agents across different sectors and regions. The modeling of individual behavior is based on heuristics with empirical microfoundations. Although Eurace@Unibi has been applied successfully to different policy domains, the complexity of the structure of the model, which is similar to other agent-based macroeconomic models, makes it hard to communicate to readers the exact working of the model and enable them to check the robustness of obtained results. This paper addresses these challenges by describing the details of all decision rules, interaction protocols and balance sheet structures used in the model. Furthermore, we discuss the use of a virtual appliance as a tool allowing third parties to reproduce the simulation results and to replicate the model. The paper illustrates the potential use of the virtual appliance by providing some sensitivity analyses of the simulation output carried out using this tool.

Suggested Citation

  • Herbert Dawid & Philipp Harting & Sander Hoog & Michael Neugart, 2019. "Macroeconomics with heterogeneous agent models: fostering transparency, reproducibility and replication," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 467-538, March.
  • Handle: RePEc:spr:joevec:v:29:y:2019:i:1:d:10.1007_s00191-018-0594-0
    DOI: 10.1007/s00191-018-0594-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00191-018-0594-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dawid Herbert & Gemkow Simon & Harting Philipp & Kabus Kordian & Wersching Klaus & Neugart Michael, 2008. "Skills, Innovation, and Growth: An Agent-Based Policy Analysis," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 251-275, April.
    2. Sinitskaya, Ekaterina & Tesfatsion, Leigh, 2015. "Macroeconomies as constructively rational games," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 152-182.
    3. Ongena, Steven & Smith, David C., 2000. "What Determines the Number of Bank Relationships? Cross-Country Evidence," Journal of Financial Intermediation, Elsevier, vol. 9(1), pages 26-56, January.
    4. Jasmina Arifovic & James Bullard & Olena Kostyshyna, 2013. "Social Learning and Monetary Policy Rules," Economic Journal, Royal Economic Society, vol. 123(567), pages 38-76, March.
    5. Ashraf, Quamrul & Gershman, Boris & Howitt, Peter, 2016. "How Inflation Affects Macroeconomic Performance: An Agent-Based Computational Investigation," Macroeconomic Dynamics, Cambridge University Press, vol. 20(2), pages 558-581, March.
    6. Barde, Sylvain, 2016. "Direct comparison of agent-based models of herding in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 329-353.
    7. Sylvain Barde, 2017. "A Practical, Accurate, Information Criterion for Nth Order Markov Processes," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 281-324, August.
    8. Herbert Dawid & Simon Gemkow & Philipp Harting & Michael Neugart, 2009. "On the Effects of Skill Upgrading in the Presence of Spatial Labor Market Frictions: An Agent-Based Analysis of Spatial Policy Design," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-5.
    9. Sylvain Barde & Sander Van Der Hoog, 2017. "An empirical validation protocol for large-scale agent-based models," Sciences Po publications 17/12, Sciences Po.
    10. Mandel, Antoine & Landini, Simone & Gallegati, Mauro & Gintis, Herbert, 2015. "Price dynamics, financial fragility and aggregate volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 257-277.
    11. Assenza, Tiziana & Delli Gatti, Domenico, 2013. "E Pluribus Unum: Macroeconomic modelling for multi-agent economies," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1659-1682.
    12. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.
    13. Deaton, Angus, 1991. "Saving and Liquidity Constraints," Econometrica, Econometric Society, vol. 59(5), pages 1221-1248, September.
    14. Giorgio Fagiolo & Andrea Roventini, 2012. "Macroeconomic Policy in DSGE and Agent-Based Models," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(5), pages 67-116.
    15. H. Dawid & P. Harting & M. Neugart, 2018. "Fiscal transfers and regional economic growth," Review of International Economics, Wiley Blackwell, vol. 26(3), pages 651-671, August.
    16. Blinder, Alan S, 1991. "Why Are Prices Sticky? Preliminary Results from an Interview Study," American Economic Review, American Economic Association, vol. 81(2), pages 89-96, May.
    17. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," Review of Economic Studies, Oxford University Press, vol. 68(2), pages 235-260.
    18. Antoine Mandel & Carlo Jaeger & Steffen Fürst & Wiebke Lass & Daniel Lincke & Frank Meissner & Federico Pablo-Marti & Sarah Wolf, 2010. "Agent-based dynamics in disaggregated growth models," Post-Print halshs-00542442, HAL.
    19. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    20. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea & Treibich, Tania, 2015. "Fiscal and monetary policies in complex evolving economies," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 166-189.
    21. Hommes,Cars, 2015. "Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems," Cambridge Books, Cambridge University Press, number 9781107564978, January.
    22. Nigel Gilbert & Pietro Terna, 2000. "How to build and use agent-based models in social science," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 1(1), pages 57-72, March.
    23. Alberto Russo & Luca Riccetti & Mauro Gallegati, 2016. "Increasing inequality, consumer credit and financial fragility in an agent based macroeconomic model," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 25-47, March.
    24. Pascal Seppecher & Isabelle Salle, 2015. "Deleveraging crises and deep recessions: a behavioural approach," Applied Economics, Taylor & Francis Journals, vol. 47(34-35), pages 3771-3790, July.
    25. Weddepohl, Claus, 1995. "A cautious price adjustment mechanism: Chaotic behavior," Journal of Economic Behavior & Organization, Elsevier, vol. 27(2), pages 293-300, July.
    26. De Grauwe, Paul & Macchiarelli, Corrado, 2015. "Animal spirits and credit cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 59(C), pages 95-117.
    27. Uri Wilensky & William Rand, 2007. "Making Models Match: Replicating an Agent-Based Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-2.
    28. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    29. Herbert Dawid & Michael Neugart, 2011. "Agent-based Models for Economic Policy Design," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 37(1), pages 44-50.
    30. Dawid, H. & Harting, P. & Neugart, M., 2014. "Economic convergence: Policy implications from a heterogeneous agent model," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 54-80.
    31. Lakshman Krishnamurthi & S. P. Raj, 1988. "A Model of Brand Choice and Purchase Quantity Price Sensitivities," Marketing Science, INFORMS, vol. 7(1), pages 1-20.
    32. Jérôme Vandenbussche & Philippe Aghion & Costas Meghir, 2006. "Growth, distance to frontier and composition of human capital," Journal of Economic Growth, Springer, vol. 11(2), pages 97-127, June.
    33. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea & Treibich, Tania, 2015. "Fiscal and monetary policies in complex evolving economies," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 166-189.
    34. Chiarella, Carl & He, Xue-Zhong, 2003. "Heterogeneous Beliefs, Risk, And Learning In A Simple Asset-Pricing Model With A Market Maker," Macroeconomic Dynamics, Cambridge University Press, vol. 7(4), pages 503-536, September.
    35. Caiani, Alessandro & Godin, Antoine & Caverzasi, Eugenio & Gallegati, Mauro & Kinsella, Stephen & Stiglitz, Joseph E., 2016. "Agent based-stock flow consistent macroeconomics: Towards a benchmark model," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 375-408.
    36. Howitt, Peter, 2012. "What have central bankers learned from modern macroeconomic theory?," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 11-22.
    37. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    38. Herbert Dawid & Simon Gemkow, 2014. "How do social networks contribute to wage inequality? Insights from an agent-based analysis," Industrial and Corporate Change, Oxford University Press, vol. 23(5), pages 1171-1200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rzeszutek, Marcin & Godin, Antoine & Szyszka, Adam & Augier, Stanislas, 2020. "Managerial overconfidence in initial public offering decisions and its impact on macrodynamics and financial stability: Analysis using an agent-based model," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    2. Bertani, Filippo & Ponta, Linda & Raberto, Marco & Teglio, Andrea & Cincotti, Silvano, 2019. "The complexity of the intangible digital economy: an agent-based model," MPRA Paper 97071, University Library of Munich, Germany.
    3. Matthias Aistleitner & Claudius Graebner & Anna Hornykewycz, 2020. "Theory and Empirics of Capability Accumulation: Implications for Macroeconomic Modelling," ICAE Working Papers 105, Johannes Kepler University, Institute for Comprehensive Analysis of the Economy.
    4. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    5. Giovanni Dosi & Andrea Roventini, 2019. "More is different ... and complex! the case for agent-based macroeconomics," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 1-37, March.
    6. Orlando Gomes, 0. "Growth theory under heterogeneous heuristic behavior," Journal of Evolutionary Economics, Springer, vol. 0, pages 1-39.
    7. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    8. Orlando Gomes, 0. "Hand-to-mouth consumers, rule-of-thumb savers, and optimal control," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 0, pages 1-35.
    9. Papadopoulos, Georgios, 2020. "Probing the mechanism: lending rate setting in a data-driven agent-based model," MPRA Paper 102749, University Library of Munich, Germany.
    10. Mellacher, Patrick, 2020. "COVID-Town: An Integrated Economic-Epidemiological Agent-Based Model," MPRA Paper 103661, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvain Barde & Sander Van Der Hoog, 2017. "An empirical validation protocol for large-scale agent-based models," Sciences Po publications 17/12, Sciences Po.
    2. Giovanni Dosi & Andrea Roventini, 2019. "More is different ... and complex! the case for agent-based macroeconomics," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 1-37, March.
    3. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    4. Eugenio Caverzasi & Alberto Russo, 2018. "Toward a new microfounded macroeconomics in the wake of the crisis," Industrial and Corporate Change, Oxford University Press, vol. 27(6), pages 999-1014.
    5. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.
    6. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    7. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Giovanni Dosi & Andrea Roventini, 2017. "Agent-Based Macroeconomics and Classical Political Economy: Some Italian Roots," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 3(3), pages 261-283, November.
    9. Guerini, Mattia & Napoletano, Mauro & Roventini, Andrea, 2018. "No man is an Island: The impact of heterogeneity and local interactions on macroeconomic dynamics," Economic Modelling, Elsevier, vol. 68(C), pages 82-95.
    10. Ermanno Catullo & Mauro Gallegati & Alberto Russo, 2020. "Forecasting in a complex environment: Machine learning sales expectations in a Stock Flow Consistent Agent-Based simulation model," Working Papers 2020/17, Economics Department, Universitat Jaume I, Castellón (Spain).
    11. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    12. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.
    13. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    14. Giovanni Dosi & Marcelo C. Pereira & Andrea Roventini & Maria Enrica Virgillito, 2016. "The Effects of Labour Market Reforms upon Unemployment and Income Inequalities: an Agent Based Model," LEM Papers Series 2016/27, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Pascal Seppecher & Isabelle Salle & Dany Lang, 2019. "Is the market really a good teacher?," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 299-335, March.
    16. Tommaso Ciarli & André Lorentz & Marco Valente & Maria Savona, 2019. "Structural changes and growth regimes," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 119-176, March.
    17. Dosi, G. & Pereira, M.C. & Roventini, A. & Virgillito, M.E., 2019. "What if supply-side policies are not enough? The perverse interaction of flexibility and austerity," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 360-388.
    18. Giri, Federico & Riccetti, Luca & Russo, Alberto & Gallegati, Mauro, 2019. "Monetary policy and large crises in a financial accelerator agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 42-58.
    19. Dosi, G. & Pereira, M.C. & Roventini, A. & Virgillito, M.E., 2017. "When more flexibility yields more fragility: The microfoundations of Keynesian aggregate unemployment," Journal of Economic Dynamics and Control, Elsevier, vol. 81(C), pages 162-186.
    20. Emanuele Russo, 2017. "Harrodian instability in decentralized economies: an agent-based approach," LEM Papers Series 2017/17, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    More about this item

    Keywords

    Agent-based macroeconomics; Replication; Reproduction; Eurace@Unibi;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joevec:v:29:y:2019:i:1:d:10.1007_s00191-018-0594-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.