IDEAS home Printed from https://ideas.repec.org/a/oup/erevae/v50y2023i3p918-953..html
   My bibliography  Save this article

Do agri-environment measures help improve environmental and economic efficiency? Evidence from Bavarian dairy farmers

Author

Listed:
  • Amer Ait Sidhoum
  • Philipp Mennig
  • Johannes Sauer

Abstract

This study presents an innovative empirical application to the assessment of agri-environment measures on environmental and economic efficiency. Using a multi-equation representation with desirable technology and its accompanying undesirable by-production technology, we investigate the effects of agri-environment measures on farm-level environmental and economic efficiency. A combination of propensity score matching and a difference-in-difference approach is used to estimate the policy effect. The application focuses on a balanced sample of Bavarian dairy farms surveyed between 2013 and 2018. Results suggest that agri-environment schemes do not alter farms’ economic efficiency, whereas environmental efficiency does not seem to be stimulated by schemes participation.

Suggested Citation

  • Amer Ait Sidhoum & Philipp Mennig & Johannes Sauer, 2023. "Do agri-environment measures help improve environmental and economic efficiency? Evidence from Bavarian dairy farmers," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(3), pages 918-953.
  • Handle: RePEc:oup:erevae:v:50:y:2023:i:3:p:918-953.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/erae/jbad007
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fogarasi, Jozsef & Latruffe, Laure, 2009. "Farm performance and support in Central and Western Europe: a comparison of Hungary and France," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51053, Agricultural Economics Society.
    2. Christian Grovermann & Tesfamicheal Wossen & Adrian Muller & Karin Nichterlein, 2019. "Eco-efficiency and agricultural innovation systems in developing countries: Evidence from macro-level analysis," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
    3. Maria Martinez Cillero & Fiona Thorne & Michael Wallace & James Breen & Thia Hennessy, 2018. "The Effects of Direct Payments on Technical Efficiency of Irish Beef Farms: A Stochastic Frontier Analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 669-687, September.
    4. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    5. Berit Hasler & Mette Termansen & Helle Ørsted Nielsen & Carsten Daugbjerg & Sven Wunder & Uwe Latacz-Lohmann, 2022. "European Agri-environmental Policy: Evolution, Effectiveness, and Challenges," Review of Environmental Economics and Policy, University of Chicago Press, vol. 16(1), pages 105-125.
    6. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    7. Andrea Pufahl & Christoph R. Weiss, 2009. "Evaluating the effects of farm programmes: results from propensity score matching," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 36(1), pages 79-101, March.
    8. Timo Sipiläinen & Anni Huhtala, 2013. "Opportunity costs of providing crop diversity in organic and conventional farming: would targeted environmental policies make economic sense?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 40(3), pages 441-462, July.
    9. Robert G. Chambers & Teresa Serra, 2018. "The social dimension of firm performance: a data envelopment approach," Empirical Economics, Springer, vol. 54(1), pages 189-206, February.
    10. Coelli, Tim J. & Battese, George E., 1996. "Identification Of Factors Which Influence The Technical Inefficiency Of Indian Farmers," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 40(2), pages 1-26, August.
    11. Mark A. Sutton & Oene Oenema & Jan Willem Erisman & Adrian Leip & Hans van Grinsven & Wilfried Winiwarter, 2011. "Too much of a good thing," Nature, Nature, vol. 472(7342), pages 159-161, April.
    12. Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
    13. Philipp Mennig & Johannes Sauer, 2020. "The impact of agri-environment schemes on farm productivity: a DID-matching approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1045-1093.
    14. Chabé-Ferret, Sylvain & Subervie, Julie, 2013. "How much green for the buck? Estimating additional and windfall effects of French agro-environmental schemes by DID-matching," Journal of Environmental Economics and Management, Elsevier, vol. 65(1), pages 12-27.
    15. S Reinhard & G Thijssen, 2000. "Nitrogen efficiency of Dutch dairy farms: a shadow cost system approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(2), pages 167-186, June.
    16. Subal C. Kumbhakar & Emir Malikov, 2018. "Good modeling of bad outputs: editors’ introduction," Empirical Economics, Springer, vol. 54(1), pages 1-6, February.
    17. Alfons Weersink & Calum G. Turvey & Abdulahi Godah, 1990. "Decomposition Measures of Technical Efficiency for Ontario Dairy Farms," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 38(4), pages 1023-1023, December.
    18. Amer Ait Sidhoum & Teresa Serra & Laure Latruffe, 2020. "Measuring sustainability efficiency at farm level: a data envelopment analysis approach [Economic and environmental efficiency of district heating plants]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(1), pages 200-225.
    19. Latruffe, Laure & Fogarasi, József & Desjeux, Yann, 2012. "Efficiency, productivity and technology comparison for farms in Central and Western Europe: The case of field crop and dairy farming in Hungary and France," Economic Systems, Elsevier, vol. 36(2), pages 264-278.
    20. María Pérez Urdiales & Alfons Oude Lansink & Alan Wall, 2016. "Eco-efficiency Among Dairy Farmers: The Importance of Socio-economic Characteristics and Farmer Attitudes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 559-574, August.
    21. Stéphane Blancard & Jean-Philippe Boussemart & Walter Briec & Kristiaan Kerstens, 2006. "Short- and Long-Run Credit Constraints in French Agriculture: A Directional Distance Function Framework Using Expenditure-Constrained Profit Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(2), pages 351-364.
    22. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    23. Augurzky, Boris & Schmidt, Christoph M., 2001. "The Propensity Score: A Means to An End," IZA Discussion Papers 271, Institute of Labor Economics (IZA).
    24. Gwendolen DeBoe, 2020. "Economic and environmental sustainability performance of environmental policies in agriculture," OECD Food, Agriculture and Fisheries Papers 140, OECD Publishing.
    25. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    26. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    27. Theodoros Skevas & Teresa Serra, 2016. "The role of pest pressure in technical and environmental inefficiency analysis of Dutch arable farms: an event-specific data envelopment approach," Journal of Productivity Analysis, Springer, vol. 46(2), pages 139-153, December.
    28. Linda Arata & Paolo Sckokai, 2016. "The Impact of Agri-environmental Schemes on Farm Performance in Five E.U. Member States: A DID-Matching Approach," Land Economics, University of Wisconsin Press, vol. 92(1), pages 167-186.
    29. Banker, Rajiv D. & Chang, Hsihui, 2006. "The super-efficiency procedure for outlier identification, not for ranking efficient units," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1311-1320, December.
    30. Fraser, I. & Cordina, D., 1999. "An application of data envelopment analysis to irrigated dairy farms in Northern Victoria, Australia," Agricultural Systems, Elsevier, vol. 59(3), pages 267-282, March.
    31. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    32. Mark Brady & Konrad Kellermann & Christoph Sahrbacher & Ladislav Jelinek, 2009. "Impacts of Decoupled Agricultural Support on Farm Structure, Biodiversity and Landscape Mosaic: Some EU Results," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(3), pages 563-585, September.
    33. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    34. Akhter Ali & Awudu Abdulai, 2010. "The Adoption of Genetically Modified Cotton and Poverty Reduction in Pakistan," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(1), pages 175-192, February.
    35. Finn R. Førsund, 2018. "Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance," Empirical Economics, Springer, vol. 54(1), pages 67-99, February.
    36. Alfons Weersink & Calum G. Turvey & Abdulahi Godah, 1990. "Decomposition Measures of Technical Efficiency for Ontario Dairy Farms," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 38(4), pages 1023-1023, December.
    37. Sébastien Mary, 2013. "Assessing the Impacts of Pillar 1 and 2 Subsidies on TFP in French Crop Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(1), pages 133-144, February.
    38. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    39. Bouali Guesmi & Teresa Serra, 2015. "Can We Improve Farm Performance? The Determinants of Farm Technical and Environmental Efficiency," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 37(4), pages 692-717.
    40. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    41. Jaforullah, Mohammad & Whiteman, John, 1999. "Scale efficiency in the New Zealand dairy industry: a non-parametric approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 43(4), pages 1-19, December.
    42. Antonio Alvarez & Julio del Corral, 2010. "Identifying different technologies using a latent class model: extensive versus intensive dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(2), pages 231-250, June.
    43. Carlos D. Mayen & Joseph V. Balagtas & Corinne E. Alexander, 2010. "Technology Adoption and Technical Efficiency: Organic and Conventional Dairy Farms in the United States," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 181-195.
    44. Skevas, Theodoros & Lansink, Alfons Oude & Stefanou, Spiro E., 2012. "Measuring technical efficiency in the presence of pesticide spillovers and production uncertainty: The case of Dutch arable farms," European Journal of Operational Research, Elsevier, vol. 223(2), pages 550-559.
    45. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    46. Adewale Henry Adenuga & John Davis & George Hutchinson & Trevor Donnellan & Myles Patton, 2019. "Environmental Efficiency and Pollution Costs of Nitrogen Surplus in Dairy Farms: A Parametric Hyperbolic Technology Distance Function Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1273-1298, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amer Ait Sidhoum & Carolin Canessa & Johannes Sauer, 2023. "Effects of agri‐environment schemes on farm‐level eco‐efficiency measures: Empirical evidence from EU countries," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 551-569, June.
    2. Amer Ait Sidhoum, 2023. "Assessing the contribution of farmers’ working conditions to productive efficiency in the presence of uncertainty, a nonparametric approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8601-8622, August.
    3. Amer Ait Sidhoum, 2023. "Measuring farm productivity under production uncertainty," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(4), pages 672-687, October.
    4. Skevas, Theodoros & Martinez-Palomares, Jorge C., 2023. "Technology heterogeneity and sustainability efficiency: Empirical evidence from Peruvian coffee production," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1192-1200.
    5. Juan Aparicio & Magdalena Kapelko & Lidia Ortiz, 2021. "Modelling environmental inefficiency under a quota system," Operational Research, Springer, vol. 21(2), pages 1097-1124, June.
    6. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    7. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    8. Zhu, Liyun & Schneider, Kevin & Oude Lansink, Alfons, 2023. "Economic, environmental, and social inefficiency assessment of Dutch dairy farms based on the dynamic by-production model," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1134-1145.
    9. Jean-Philippe Boussemart & Hervé Leleu & Zhiyang Shen & Vivian Valdmanis, 2020. "Performance analysis for three pillars of sustainability," Journal of Productivity Analysis, Springer, vol. 53(3), pages 305-320, June.
    10. Cisilino, Federica & Bodini, Antonella & Zanoli, Agostina, 2019. "Rural development programs’ impact on environment: An ex-post evaluation of organic faming," Land Use Policy, Elsevier, vol. 85(C), pages 454-462.
    11. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    12. Michalek, Jerzy, 2022. "Environmental and farm impacts of the EU RDP agri-environmental measures: Evidence from Slovak regions," Land Use Policy, Elsevier, vol. 113(C).
    13. Kassoum Ayouba & Jean-Philippe Boussemart & Stéphane Vigeant, 2017. "The impact of single farm payments on technical inefficiency of French crop farms," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(1), pages 1-23, July.
    14. Juan Aparicio & Jose Manuel Cordero & Carlos Díaz-Caro, 2020. "Efficiency and productivity change of regional tax offices in Spain: an empirical study using Malmquist–Luenberger and Luenberger indices," Empirical Economics, Springer, vol. 59(3), pages 1403-1434, September.
    15. Ang, Frederic & Oude Lansink, Alfons, 2014. "Dynamic profit inefficiency: a DEA application to Belgian dairy farms," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182649, European Association of Agricultural Economists.
    16. K. Hervé Dakpo & Yann Desjeux & Laure Latruffe, 2023. "Cost of abating excess nitrogen on wheat plots in France: An assessment with multi‐technology modelling," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 800-815, September.
    17. Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
    18. Engida, Tadesse Getacher & Rao, Xudong & Oude Lansink, Alfons G.J.M., 2020. "A dynamic by-production framework for analyzing inefficiency associated with corporate social responsibility," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1170-1179.
    19. Theodoros Skevas & Ioannis Skevas & Victor E. Cabrera, 2021. "Examining the Relationship between Social Inefficiency and Financial Performance. Evidence from Wisconsin Dairy Farms," Sustainability, MDPI, vol. 13(7), pages 1-14, March.
    20. Roberto ESPOSTI, 2014. "To match, not to match, how to match: Estimating the farm-level impact of the CAP-first pillar reform (or: How to Apply Treatment-Effect Econometrics when the Real World is;a Mess)," Working Papers 403, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:erevae:v:50:y:2023:i:3:p:918-953.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.