IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp271.html
   My bibliography  Save this paper

The Propensity Score: A Means to An End

Author

Listed:
  • Augurzky, Boris

    (RWI)

  • Schmidt, Christoph M.

    (RWI)

Abstract

Propensity score matching is a prominent strategy to reduce imbalance in observational studies. However, if imbalance is considerable and the control reservoir is small, either one has to match one control to several treated units or, alternatively, discard many treated persons. The first strategy tends to increase standard errors of the estimated treatment effects while the second might produce a matched sample that is not anymore representative of the original one. As an alternative approach, this paper argues to carefully reconsider the selection equation upon which the propensity score estimates are based. Often, all available variables that rule the selection process are included into the selection equation. Yet, it would suffice to concentrate on only those exhibiting a large impact on the outcome under scrutiny, as well. This would introduce more stochastic noise making treatment and comparison group more similar. We assess the advantages and disadvantages of the latter approach in a simulation study.

Suggested Citation

  • Augurzky, Boris & Schmidt, Christoph M., 2001. "The Propensity Score: A Means to An End," IZA Discussion Papers 271, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp271
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp271.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Estimation of the propensity score; balance of relevant covariates; simulation study;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp271. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.