IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1033-d315103.html
   My bibliography  Save this article

Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research

Author

Listed:
  • Oriana Gava

    (Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy
    Center for Policies and Bioeconomy, Council for Agricultural Research and Agricultural Economics Analysis, Rome 00198, Italy)

  • Fabio Bartolini

    (Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy)

  • Francesca Venturi

    (Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy)

  • Gianluca Brunori

    (Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy)

  • Alberto Pardossi

    (Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy)

Abstract

Life cycle assessment is a widespread method for measuring and monitoring the environmental impacts of production processes, thereby allowing the comparison of business-as-usual with more ecological scenarios. Life cycle assessment research can support evidence-based policy making by comparing and communicating the environmental impacts of agricultural and food systems, informing about the impact of mitigating interventions and monitoring sectoral progress towards sustainable development goals. This article aims at improving the contribution of science to evidence-based policies for agricultural sustainability and food security, while facilitating further research, by delivering a content-analysis based literature review of life cycle assessment research in agricultural and food economics. Results highlight that demand-side and system-level approaches need further development, as policies need to support redesigned agricultural systems and newly conceived dietary guidelines, which combine environmental protection and health benefits, without reducing productivity. Similarly, more research effort towards consequential life cycle assessment and multidimensional assessment may benefit policy makers by considering the rebound effects associated with the large-scale implementation of impact-mitigating interventions. Promising interventions involve the promotion of waste circularization strategies, which could also improve the profitability of agriculture. For effective policy making towards agricultural sustainability and food security worldwide, countries with the greatest expected population growth and raise of urbanization rates need more attention by researchers.

Suggested Citation

  • Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Alberto Pardossi, 2020. "Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1033-:d:315103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1033/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1033/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reynolds, Christian & Goucher, Liam & Quested, Tom & Bromley, Sarah & Gillick, Sam & Wells, Victoria K. & Evans, David & Koh, Lenny & Carlsson Kanyama, Annika & Katzeff, Cecilia & Svenfelt, Åsa & Jack, 2019. "Review: Consumption-stage food waste reduction interventions – What works and how to design better interventions," Food Policy, Elsevier, vol. 83(C), pages 7-27.
    2. Deepak Rajagopal & Caroline Vanderghem & Heather L. MacLean, 2017. "Life Cycle Assessment for Economists," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 361-381, October.
    3. Dong, Gang & Mao, Xianqiang & Zhou, Ji & Zeng, An, 2013. "Carbon footprint accounting and dynamics and the driving forces of agricultural production in Zhejiang Province, China," Ecological Economics, Elsevier, vol. 91(C), pages 38-47.
    4. Mariana Mazzucato, 2018. "Mission-oriented innovation policies: challenges and opportunities," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(5), pages 803-815.
    5. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.
    6. Mouron, Patrik & Scholz, Roland W. & Nemecek, Thomas & Weber, Olaf, 2006. "Life cycle management on Swiss fruit farms: Relating environmental and income indicators for apple-growing," Ecological Economics, Elsevier, vol. 58(3), pages 561-578, June.
    7. Benedetto, Graziella & Rugani, Benedetto & Vázquez-Rowe, Ian, 2014. "Rebound effects due to economic choices when assessing the environmental sustainability of wine," Food Policy, Elsevier, vol. 49(P1), pages 167-173.
    8. Dan Rigby & Michael Burton & Jayson L. Lusk, 2015. "Journals, Preferences, and Publishing in Agricultural and Environmental Economics," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(2), pages 490-509.
    9. Giovanni Abramo & Ciriaco Andrea D’Angelo, 2011. "Evaluating research: from informed peer review to bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 499-514, June.
    10. Beske, Philip & Land, Anna & Seuring, Stefan, 2014. "Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature," International Journal of Production Economics, Elsevier, vol. 152(C), pages 131-143.
    11. Goldstein, Benjamin & Hansen, Steffen Foss & Gjerris, Mickey & Laurent, Alexis & Birkved, Morten, 2016. "Ethical aspects of life cycle assessments of diets," Food Policy, Elsevier, vol. 59(C), pages 139-151.
    12. González, Alejandro D. & Frostell, Björn & Carlsson-Kanyama, Annika, 2011. "Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation," Food Policy, Elsevier, vol. 36(5), pages 562-570, October.
    13. Nepal, Rabindra & Jamasb, Tooraj & Sen, Anupama, 2018. "Small systems, big targets: Power sector reforms and renewable energy in small systems," Energy Policy, Elsevier, vol. 116(C), pages 19-29.
    14. Eory, Vera & MacLeod, Michael & Shrestha, Shailesh & Roberts, David, 2014. "Linking an Economic and a Life-cycle Analysis Biophysical Model to Support Agricultural Greenhouse Gas Mitigation Policy," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(3).
    15. Brodt, Sonja & Kramer, Klaas Jan & Kendall, Alissa & Feenstra, Gail, 2013. "Comparing environmental impacts of regional and national-scale food supply chains: A case study of processed tomatoes," Food Policy, Elsevier, vol. 42(C), pages 106-114.
    16. Leach, Allison M. & Emery, Kyle A. & Gephart, Jessica & Davis, Kyle F. & Erisman, Jan Willem & Leip, Adrian & Pace, Michael L. & D’Odorico, Paolo & Carr, Joel & Noll, Laura Cattell & Castner, Elizabet, 2016. "Environmental impact food labels combining carbon, nitrogen, and water footprints," Food Policy, Elsevier, vol. 61(C), pages 213-223.
    17. Jules Pretty & Tim G. Benton & Zareen Pervez Bharucha & Lynn V. Dicks & Cornelia Butler Flora & H. Charles J. Godfray & Dave Goulson & Sue Hartley & Nic Lampkin & Carol Morris & Gary Pierzynski & P. V, 2018. "Global assessment of agricultural system redesign for sustainable intensification," Nature Sustainability, Nature, vol. 1(8), pages 441-446, August.
    18. Bryngelsson, David & Wirsenius, Stefan & Hedenus, Fredrik & Sonesson, Ulf, 2016. "How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture," Food Policy, Elsevier, vol. 59(C), pages 152-164.
    19. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    20. McFadden, Brandon R. & Nalley, L. Lanier & Popp, Michael P., 2013. "How Greenhouse Gas Emission Policy and Industry Pressure Could Affect Producer Selection of Rice Cultivars," Agricultural and Resource Economics Review, Cambridge University Press, vol. 42(2), pages 325-348, August.
    21. L. Devers & T.E. Kleynhans & E. Mathijs, 2012. "Comparative life cycle assessment of Flemish and Western Cape pork production," Agrekon, Taylor & Francis Journals, vol. 51(4), pages 105-128, December.
    22. Matthias Finkbeiner & Erwin M. Schau & Annekatrin Lehmann & Marzia Traverso, 2010. "Towards Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 2(10), pages 1-14, October.
    23. Tsiboe, Francis & Nalley, Lawton Lanier & Durand, Alvaro & Thoma, Greg & Shew, Aaron, 2017. "The Economic and Environmental Benefits of Sheath Blight Resistance in Rice," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(2), May.
    24. Andrea G. Capodaglio & Arianna Callegari & Maria Virginia Lopez, 2016. "European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    25. K Hervé Dakpo & Philippe Jeanneaux & Laure Latruffe, 2017. "Greenhouse gas emissions and efficiency in French sheep meat farming: A non-parametric framework of pollution-adjusted technologies," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(1), pages 33-65.
    26. Silvia Coderoni & Laura Valli & Maurizio Canavari, 2015. "Climate Change Mitigation Options in the Italian Livestock Sector," EuroChoices, The Agricultural Economics Society, vol. 14(1), pages 17-24, April.
    27. Deepak Rajagopal & Caroline Vanderghem & Heather L. MacLean, 2017. "Life Cycle Assessment for Economists," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 361-381, October.
    28. Röös, Elin & Patel, Mikaela & Spångberg, Johanna & Carlsson, Georg & Rydhmer, Lotta, 2016. "Limiting livestock production to pasture and by-products in a search for sustainable diets," Food Policy, Elsevier, vol. 58(C), pages 1-13.
    29. Gadema, Zaina & Oglethorpe, David, 2011. "The use and usefulness of carbon labelling food: A policy perspective from a survey of UK supermarket shoppers," Food Policy, Elsevier, vol. 36(6), pages 815-822.
    30. Frank van Tongeren, 2008. "Agricultural Policy Design and Implementation: A Synthesis," OECD Food, Agriculture and Fisheries Papers 7, OECD Publishing.
    31. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    32. van Dooren, C. & Marinussen, Mari & Blonk, Hans & Aiking, Harry & Vellinga, Pier, 2014. "Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns," Food Policy, Elsevier, vol. 44(C), pages 36-46.
    33. Apostolidis, Chrysostomos & McLeay, Fraser, 2016. "Should we stop meating like this? Reducing meat consumption through substitution," Food Policy, Elsevier, vol. 65(C), pages 74-89.
    34. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    35. Carlsson-Kanyama, Annika, 1998. "Climate change and dietary choices -- how can emissions of greenhouse gases from food consumption be reduced?," Food Policy, Elsevier, vol. 23(3-4), pages 277-293, November.
    36. Halloran, Afton & Clement, Jesper & Kornum, Niels & Bucatariu, Camelia & Magid, Jakob, 2014. "Addressing food waste reduction in Denmark," Food Policy, Elsevier, vol. 49(P1), pages 294-301.
    37. Kannan Govindan & Mia Hasanagic, 2018. "A systematic review on drivers, barriers, and practices towards circular economy: a supply chain perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 278-311, January.
    38. Felix Creutzig & Alexander Popp & Richard Plevin & Gunnar Luderer & Jan Minx & Ottmar Edenhofer, 2012. "Reconciling top-down and bottom-up modelling on future bioenergy deployment," Nature Climate Change, Nature, vol. 2(5), pages 320-327, May.
    39. Morris, Chelsea & Jorgenson, William & Snellings, Sam, 2010. "Carbon and Energy Life-Cycle Assessment for Five Agricultural Anaerobic Digesters in Massachusetts on Small Dairy Farms," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 13(3), pages 1-8, September.
    40. Basset-Mens, Claudine & Ledgard, Stewart & Boyes, Mark, 2009. "Eco-efficiency of intensification scenarios for milk production in New Zealand," Ecological Economics, Elsevier, vol. 68(6), pages 1615-1625, April.
    41. Cerutti, Alessandro K. & Contu, Simone & Ardente, Fulvio & Donno, Dario & Beccaro, Gabriele L., 2016. "Carbon footprint in green public procurement: Policy evaluation from a case study in the food sector," Food Policy, Elsevier, vol. 58(C), pages 82-93.
    42. Peter Horton & Steve A. Banwart & Dan Brockington & Garrett W. Brown & Richard Bruce & Duncan Cameron & Michelle Holdsworth & S. C. Lenny Koh & Jurriaan Ton & Peter Jackson, 2017. "An agenda for integrated system-wide interdisciplinary agri-food research," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(2), pages 195-210, April.
    43. Tomaz Bartol & Gordana Budimir & Primoz Juznic & Karmen Stopar, 2016. "Mapping and classification of agriculture in Web of Science: other subject categories and research fields may benefit," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 979-996, November.
    44. Eory, Vera & MacLeod, Michael & Shrestha, Shailesh & Roberts, David, 2014. "Linking an Economic and a Life-cycle Analysis Biophysical Model to Support Agricultural Greenhouse Gas Mitigation Policy," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 63(03), pages 1-10, September.
    45. Vázquez-Rowe, Ian & Villanueva-Rey, Pedro & Moreira, Mª Teresa & Feijoo, Gumersindo, 2013. "The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting," Food Policy, Elsevier, vol. 41(C), pages 94-102.
    46. Jayson L. Lusk, 2017. "Evaluating the Policy Proposals of the Food Movement," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(3), pages 387-406.
    47. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(Supplemen), pages 23-32, January.
    48. Roland Herrmann & Ernst Berg & Stephan Dabbert & Siegfried Pöchtrager & Klaus Salhofer, 2011. "Going Beyond Impact Factors: A Survey‐based Journal Ranking by Agricultural Economists," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(3), pages 710-732, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boima M. Bernard & Yanping Song & Sehresh Hena & Fayyaz Ahmad & Xin Wang, 2022. "Assessing Africa’s Agricultural TFP for Food Security and Effects on Human Development: Evidence from 35 Countries," Sustainability, MDPI, vol. 14(11), pages 1-21, May.
    2. Chenavaz, Régis Y. & Dimitrov, Stanko & Figge, Frank, 2021. "When does eco-efficiency rebound or backfire? An analytical model," European Journal of Operational Research, Elsevier, vol. 290(2), pages 687-700.
    3. Putri Aliah Mohd Hidzir & Shafinar Ismail & Sharifah Heryati Syed Nor & Aqilah Nadiah Md Sahiq, 2023. "Financial Well-Being of Micro-Entrepreneurs: A Proposed Conceptual Framework," Information Management and Business Review, AMH International, vol. 15(3), pages 418-428.
    4. Koblianska, Inna & Kalachevska, Larysa & Schlauderer, Ralf, 2024. "Agricultural life cycle assessment: a system-wide bibliometric research," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 10(1), March.
    5. Ryo Kohsaka & Satomi Kohyama, 2022. "State of the Art Review on Land-Use Policy: Changes in Forests, Agricultural Lands and Renewable Energy of Japan," Land, MDPI, vol. 11(5), pages 1-13, April.
    6. Nan-Hua Nadja Yang & Ana Carolina Bertassini & Jéssica Alves Justo Mendes & Mateus Cecílio Gerolamo, 2021. "The ‘3CE2CE’ Framework—Change Management Towards a Circular Economy: Opportunities for Agribusiness," Circular Economy and Sustainability, Springer, vol. 1(2), pages 697-718, September.
    7. Mihai Dinu & Simona Roxana Pătărlăgeanu & Radu Petrariu & Marius Constantin & Ana-Mădălina Potcovaru, 2020. "Empowering Sustainable Consumer Behavior in the EU by Consolidating the Roles of Waste Recycling and Energy Productivity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    2. Oriana Gava & Francesca Galli & Fabio Bartolini & Gianluca Brunori, 2018. "Linking Sustainability with Geographical Proximity in Food Supply Chains. An Indicator Selection Framework," Agriculture, MDPI, vol. 8(9), pages 1-22, August.
    3. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    4. Olavo Pinto & Beatriz Casais, 2023. "Multilevel implications for anti-consumption social marketing within the public policy framework for SDG realization: a systematic literature review," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 20(3), pages 605-634, September.
    5. van Dooren, C. & Keuchenius, C. & de Vries, J.H.M. & de Boer, J. & Aiking, H., 2018. "Unsustainable dietary habits of specific subgroups require dedicated transition strategies: Evidence from the Netherlands," Food Policy, Elsevier, vol. 79(C), pages 44-57.
    6. Vázquez-Rowe, Ian & Villanueva-Rey, Pedro & Moreira, Mª Teresa & Feijoo, Gumersindo, 2013. "The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting," Food Policy, Elsevier, vol. 41(C), pages 94-102.
    7. Louise Seconda & Julia Baudry & Benjamin Allès & Christine Boizot-Szantai & Louis-Georges Soler & Pilar Galan & Serge Hercberg & Brigitte Langevin & Denis Lairon & Philippe Pointereau & Emmanuelle Kes, 2018. "Comparing nutritional, economic, and environmental performances of diets according to their levels of greenhouse gas emissions," Climatic Change, Springer, vol. 148(1), pages 155-172, May.
    8. Johanna Ruett & Lena Hennes & Jens Teubler & Boris Braun, 2022. "How Compatible Are Western European Dietary Patterns to Climate Targets? Accounting for Uncertainty of Life Cycle Assessments by Applying a Probabilistic Approach," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    9. Hunter, Erik & Röös, Elin, 2016. "Fear of climate change consequences and predictors of intentions to alter meat consumption," Food Policy, Elsevier, vol. 62(C), pages 151-160.
    10. Van Loo, Ellen J. & Hoefkens, Christine & Verbeke, Wim, 2017. "Healthy, sustainable and plant-based eating: Perceived (mis)match and involvement-based consumer segments as targets for future policy," Food Policy, Elsevier, vol. 69(C), pages 46-57.
    11. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    12. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    13. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Martina Alig Ceesay & Reiner Doluschitz, 2016. "Local versus Global Environmental Performance of Dairying and Their Link to Economic Performance: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    14. Nathalie Gröfke & Valérie Duplat & Christopher Wickert & Brian Tjemkes, 2021. "A Multi-Stakeholder Perspective on Food Labelling for Environmental Sustainability: Attitudes, Perceived Barriers, and Solution Approaches towards the “Traffic Light Index”," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    15. Arrieta, E.M. & González, A.D., 2018. "Impact of current, National Dietary Guidelines and alternative diets on greenhouse gas emissions in Argentina," Food Policy, Elsevier, vol. 79(C), pages 58-66.
    16. Burek, Jasmina & Nutter, Darin W., 2020. "Environmental implications of perishables storage and retailing☆," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Valeria De Laurentiis & Dexter V.L. Hunt & Christopher D.F. Rogers, 2016. "Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
    18. Min, Shi & Wang, Xiaobing & Yu, Xiaohua, 2021. "Does dietary knowledge affect household food waste in the developing economy of China?," Food Policy, Elsevier, vol. 98(C).
    19. van Dooren, Corné & Douma, Annely & Aiking, Harry & Vellinga, Pier, 2017. "Proposing a Novel Index Reflecting Both Climate Impact and Nutritional Impact of Food Products," Ecological Economics, Elsevier, vol. 131(C), pages 389-398.
    20. Goldstein, Benjamin & Hansen, Steffen Foss & Gjerris, Mickey & Laurent, Alexis & Birkved, Morten, 2016. "Ethical aspects of life cycle assessments of diets," Food Policy, Elsevier, vol. 59(C), pages 139-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1033-:d:315103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.