IDEAS home Printed from https://ideas.repec.org/a/eee/jfpoli/v36y2011i5p562-570.html
   My bibliography  Save this article

Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation

Author

Listed:
  • González, Alejandro D.
  • Frostell, Björn
  • Carlsson-Kanyama, Annika

Abstract

The production, transport and processing of food products have significant environmental impacts, some of them related to climate change. This study examined the energy use and greenhouse gas emissions associated with the production and transport to a port in Sweden (wholesale point) of 84 common food items of animal and vegetable origin. Energy use and greenhouse gas (GHG) emissions for food items produced in different countries and using various means of production were compared. The results confirmed that animal-based foods are associated with higher energy use and GHG emissions than plant-based foods, with the exception of vegetables produced in heated greenhouses. Analyses of the nutritional value of the foods to assess the amount of protein delivered to the wholesale point per unit energy used or GHG emitted (protein delivery efficiency) showed that the efficiency was much higher for plant-based foods than for animal-based. Remarkably, the efficiency of delivering plant-based protein increased as the amount of protein in the food increased, while the efficiency of delivering animal-based protein decreased. These results have implications for policies encouraging diets with lower environmental impacts for a growing world population.

Suggested Citation

  • González, Alejandro D. & Frostell, Björn & Carlsson-Kanyama, Annika, 2011. "Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation," Food Policy, Elsevier, vol. 36(5), pages 562-570, October.
  • Handle: RePEc:eee:jfpoli:v:36:y:2011:i:5:p:562-570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030691921100090X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veysset, P. & Lherm, M. & Bébin, D., 2010. "Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: Model-based analysis and forecasts," Agricultural Systems, Elsevier, vol. 103(1), pages 41-50, January.
    2. Carlsson-Kanyama, Annika & Ekstrom, Marianne Pipping & Shanahan, Helena, 2003. "Food and life cycle energy inputs: consequences of diet and ways to increase efficiency," Ecological Economics, Elsevier, vol. 44(2-3), pages 293-307, March.
    3. Faye Duchin, 2004. "Sustainable Consumption of Food," Rensselaer Working Papers in Economics 0405, Rensselaer Polytechnic Institute, Department of Economics.
    4. Michaelowa, Axel & Dransfeld, Björn, 2008. "Greenhouse gas benefits of fighting obesity," Ecological Economics, Elsevier, vol. 66(2-3), pages 298-308, June.
    5. David Pimentel, 2009. "Energy Inputs in Food Crop Production in Developing and Developed Nations," Energies, MDPI, Open Access Journal, vol. 2(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Dooren, Corné & Douma, Annely & Aiking, Harry & Vellinga, Pier, 2017. "Proposing a Novel Index Reflecting Both Climate Impact and Nutritional Impact of Food Products," Ecological Economics, Elsevier, vol. 131(C), pages 389-398.
    2. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    3. White, Robin R. & Brady, Michael, 2014. "Can consumers’ willingness to pay incentivize adoption of environmental impact reducing technologies in meat animal production?," Food Policy, Elsevier, vol. 49(P1), pages 41-49.
    4. Francesco N. Tubiello & Josef Schmidhuber, 2014. "Emissions of greenhouse gases from agriculture and their mitigation," Chapters,in: Handbook on Food, chapter 16, pages 422-442 Edward Elgar Publishing.
    5. Chiara Lombardini & Leena Lankoski, 2013. "Forced Choice Restriction in Promoting Sustainable Food Consumption: Intended and Unintended Effects of the Mandatory Vegetarian Day in Helsinki Schools," Journal of Consumer Policy, Springer, vol. 36(2), pages 159-178, June.
    6. Grabs, Janina, 2015. "The rebound effects of switching to vegetarianism. A microeconomic analysis of Swedish consumption behavior," Ecological Economics, Elsevier, vol. 116(C), pages 270-279.
    7. Vázquez-Rowe, Ian & Villanueva-Rey, Pedro & Moreira, Mª Teresa & Feijoo, Gumersindo, 2013. "The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting," Food Policy, Elsevier, vol. 41(C), pages 94-102.
    8. Pierer, Magdalena & Winiwarter, Wilfried & Leach, Allison M. & Galloway, James N., 2014. "The nitrogen footprint of food products and general consumption patterns in Austria," Food Policy, Elsevier, vol. 49(P1), pages 128-136.
    9. Vázquez-Rowe, Ian & Benetto, Enrico, 2014. "The use of a consequential perspective to upgrade the utility of Life Cycle Assessment for fishery managers and policy makers," Marine Policy, Elsevier, vol. 48(C), pages 14-17.
    10. Li, Xiaogu & Jensen, Kimberly L. & Clark, Christopher D. & Lambert, Dayton M., 2015. "Consumer Willingness-to-Pay for Non-taste Attributes in Beef Products," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196719, Southern Agricultural Economics Association.
    11. Leach, Allison M. & Emery, Kyle A. & Gephart, Jessica & Davis, Kyle F. & Erisman, Jan Willem & Leip, Adrian & Pace, Michael L. & D’Odorico, Paolo & Carr, Joel & Noll, Laura Cattell & Castner, Elizabet, 2016. "Environmental impact food labels combining carbon, nitrogen, and water footprints," Food Policy, Elsevier, vol. 61(C), pages 213-223.
    12. Hunter, Erik & Röös, Elin, 2016. "Fear of climate change consequences and predictors of intentions to alter meat consumption," Food Policy, Elsevier, vol. 62(C), pages 151-160.
    13. repec:gam:jsusta:v:9:y:2017:i:7:p:1236-:d:104736 is not listed on IDEAS
    14. Caillavet, France & Fadhuile, Adelaide & Nichèle, Véronique, 2016. "Hunger for meat: can animal protein-based taxation reverse the trend?," 2016 Annual Meeting, July 31-August 2, 2016, Boston, Massachusetts 235982, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:36:y:2011:i:5:p:562-570. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/foodpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.