IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v65y2017icp458-470.html
   My bibliography  Save this article

A two-part feed-in-tariff for intermittent electricity generation

Author

Listed:
  • Antweiler, Werner

Abstract

As electricity generation from intermittent energy sources (wind, sun, tides) is gaining momentum, it becomes increasingly important to price these electricity sources efficiently. Conventional flat feed-in-tariffs ignore the heterogeneity of these sources. Taking into account the degree of substitutability or complementarity of these sources with respect to each other and with respect to stochastic demand variations, this paper derives optimal pricing instruments composed of a feed-in-tariff (FIT) and a capacity-augmentation-tariff (CAT). An empirical analysis looks at wind and solar farms operating in Ontario in order to determine the optimal use of FIT-CAT pricing. The magnitude of optimal price differentiation turns out to be economically significant. Furthermore, the emergence of grid-scale electricity storage underscores the need to price energy and capacity separately.

Suggested Citation

  • Antweiler, Werner, 2017. "A two-part feed-in-tariff for intermittent electricity generation," Energy Economics, Elsevier, vol. 65(C), pages 458-470.
  • Handle: RePEc:eee:eneeco:v:65:y:2017:i:c:p:458-470
    DOI: 10.1016/j.eneco.2017.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317301536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Joskow & Jean Tirole, 2007. "Reliability and competitive electricity markets," RAND Journal of Economics, RAND Corporation, vol. 38(1), pages 60-84, March.
    2. Snorre Kverndokk & Knut Rosendahl & Thomas Rutherford, 2004. "Climate Policies and Induced Technological Change: Which to Choose, the Carrot or the Stick?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 27(1), pages 21-41, January.
    3. Klinge Jacobsen, Henrik & Schröder, Sascha Thorsten, 2012. "Curtailment of renewable generation: Economic optimality and incentives," Energy Policy, Elsevier, vol. 49(C), pages 663-675.
    4. Karsten Neuhoff, 2005. "Large-Scale Deployment of Renewables for Electricity Generation," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 88-110, Spring.
    5. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    6. Paul L. Joskow, 2012. "Creating a Smarter U.S. Electricity Grid," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 29-48, Winter.
    7. AJ Goulding, 2013. "A New Blueprint for Ontario's Electricity Market," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 389, Septembre.
    8. Philippe Menanteau & Dominique Finon & Marie-Laure Lamy, 2003. "Prices versus quantities :environmental policies for promoting the development of renewable energy," Post-Print halshs-00480457, HAL.
    9. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
    10. Fernando Branco, 1997. "The Design of Multidimensional Auctions," RAND Journal of Economics, The RAND Corporation, vol. 28(1), pages 63-81, Spring.
    11. Amor, Mourad Ben & Billette de Villemeur, Etienne & Pellat, Marie & Pineau, Pierre-Olivier, 2014. "Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from Ontario zonal data," Energy, Elsevier, vol. 66(C), pages 458-469.
    12. Rowlands, Ian H., 2005. "Envisaging feed-in tariffs for solar photovoltaic electricity: European lessons for Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(1), pages 51-68, February.
    13. Lesser, Jonathan A. & Su, Xuejuan, 2008. "Design of an economically efficient feed-in tariff structure for renewable energy development," Energy Policy, Elsevier, vol. 36(3), pages 981-990, March.
    14. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    15. Melitz, Marc J., 2005. "When and how should infant industries be protected?," Journal of International Economics, Elsevier, vol. 66(1), pages 177-196, May.
    16. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    17. Yatchew, Adonis & Baziliauskas, Andy, 2011. "Ontario feed-in-tariff programs," Energy Policy, Elsevier, vol. 39(7), pages 3885-3893, July.
    18. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    19. Seeto, Dewey & Woo, C. K. & Horowitz, Ira, 1997. "Time-of-use rates vs. Hopkinson tariffs redux: An analysis of the choice of rate structures in a regulated electricity distribution company," Energy Economics, Elsevier, vol. 19(2), pages 169-185, May.
    20. Richard Green & Nicholas Vasilakos, 2011. "The Long-term Impact of Wind Power on Electricity Prices and Generating Capacity," Discussion Papers 11-09, Department of Economics, University of Birmingham.
    21. Horowitz, I. & Woo, C.K., 2006. "Designing Pareto-superior demand-response rate options," Energy, Elsevier, vol. 31(6), pages 1040-1051.
    22. Paul L. Joskow & Catherine D. Wolfram, 2012. "Dynamic Pricing of Electricity," American Economic Review, American Economic Association, vol. 102(3), pages 381-385, May.
    23. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    24. Brandstätt, Christine & Brunekreeft, Gert & Jahnke, Katy, 2011. "How to deal with negative power price spikes?--Flexible voluntary curtailment agreements for large-scale integration of wind," Energy Policy, Elsevier, vol. 39(6), pages 3732-3740, June.
    25. Amor, Mourad Ben & Billette de Villemeur, Etienne & Pellat, Marie & Pineau, Pierre-Olivier, 2014. "Influence of wind power on hourly electricity prices and GHG emissions: Evidence that congestion matters from Ontario zonal data," MPRA Paper 53630, University Library of Munich, Germany.
    26. Kverndokk, Snorre & Rosendahl, Knut Einar & Rutherford, Thomas F., 2004. "Climate policies and induced technological change: Impacts and timing of technology subsidies," Memorandum 05/2004, Oslo University, Department of Economics.
    27. Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
    28. Chao, Hung-Po & Wilson, Robert, 2002. "Multi-dimensional Procurement Auctions for Power Reserves: Robust Incentive-Compatible Scoring and Settlement Rules," Journal of Regulatory Economics, Springer, vol. 22(2), pages 161-183, September.
    29. Wilson, Robert, 1997. "Nonlinear Pricing," OUP Catalogue, Oxford University Press, number 9780195115826, Decembrie.
    30. Peter Cramton & Axel Ockenfels & Steven Stoft, 2013. "Capacity Market Fundamentals," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    31. C.K. Woo & Brian Horii & Ira Horowitz, 2002. "The Hopkinson tariff alternative to TOU rates in the Israel Electric Corporation," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 23(1), pages 9-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klaus Eisenack & Mathias Mier, 2019. "Peak-load pricing with different types of dispatchability," Journal of Regulatory Economics, Springer, vol. 56(2), pages 105-124, December.
    2. Bahramian, Pejman & Jenkins, Glenn P. & Milne, Frank, 2021. "The displacement impacts of wind power electricity generation: Costly lessons from Ontario," Energy Policy, Elsevier, vol. 152(C).
    3. David P. Brown and Andrew Eckert, 2020. "Imperfect Competition in Electricity Markets with Renewable Generation: The Role of Renewable Compensation Policies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 61-88.
    4. Antweiler, Werner & Muesgens, Felix, 2024. "The new merit order: The viability of energy-only electricity markets with only intermittent renewable energy sources and grid-scale storage," Ruhr Economic Papers 1064, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    5. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    6. Hao, Peng & Guo, Jun-Peng & Chen, Yihsu & Xie, Bai-Chen, 2020. "Does a combined strategy outperform independent policies? Impact of incentive policies on renewable power generation," Omega, Elsevier, vol. 97(C).
    7. Laur, Arnaud & Nieto-Martin, Jesus & Bunn, Derek W. & Vicente-Pastor, Alejandro, 2020. "Optimal procurement of flexibility services within electricity distribution networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 34-47.
    8. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    9. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    10. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2022. "Efficiency of resilient three-part tariff pricing schemes in residential power markets," Energy, Elsevier, vol. 239(PD).
    11. Morcillo, José D. & Franco, Carlos J. & Angulo, Fabiola, 2018. "Simulation of demand growth scenarios in the Colombian electricity market: An integration of system dynamics and dynamic systems," Applied Energy, Elsevier, vol. 216(C), pages 504-520.
    12. Zhang, Ruixiaoxiao & Shimada, Koji & Ni, Meng & Shen, Geoffrey Q.P. & Wong, Johnny K.W., 2020. "Low or No subsidy? Proposing a regional power grid based wind power feed-in tariff benchmark price mechanism in China," Energy Policy, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beck, Marisa & Rivers, Nicholas & Wigle, Randall, 2018. "How do learning externalities influence the evaluation of Ontario's renewables support policies?," Energy Policy, Elsevier, vol. 117(C), pages 86-99.
    2. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    3. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    4. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
    5. Pérez de Arce, Miguel & Sauma, Enzo & Contreras, Javier, 2016. "Renewable energy policy performance in reducing CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 272-280.
    6. Martin, Nigel & Rice, John, 2013. "The solar photovoltaic feed-in tariff scheme in New South Wales, Australia," Energy Policy, Elsevier, vol. 61(C), pages 697-706.
    7. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    8. Martin, Nigel J. & Rice, John L., 2017. "Examining the use of concept analysis and mapping software for renewable energy feed-in tariff design," Renewable Energy, Elsevier, vol. 113(C), pages 211-220.
    9. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, vol. 5(2), pages 1-32, February.
    10. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    11. Bahramian, Pejman & Jenkins, Glenn P. & Milne, Frank, 2021. "The displacement impacts of wind power electricity generation: Costly lessons from Ontario," Energy Policy, Elsevier, vol. 152(C).
    12. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Fodor, Mate, 2017. "Renewable investments: The impact of green policies in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 738-747.
    13. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    14. Sun, Peng & Nie, Pu-yan, 2015. "A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry," Renewable Energy, Elsevier, vol. 74(C), pages 255-262.
    15. Wolfgang Buchholz & Jonas Frank & Hans-Dieter Karl & Johannes Pfeiffer & Karen Pittel & Ursula Triebswetter & Jochen Habermann & Wolfgang Mauch & Thomas Staudacher, 2012. "Die Zukunft der Energiemärkte: Ökonomische Analyse und Bewertung von Potenzialen und Handlungsmöglichkeiten," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 57, October.
    16. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    17. Sakah, Marriette & Diawuo, Felix Amankwah & Katzenbach, Rolf & Gyamfi, Samuel, 2017. "Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 544-557.
    18. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).
    19. Buckman, Greg & Sibley, Jon & Bourne, Richard, 2014. "The large-scale solar feed-in tariff reverse auction in the Australian Capital Territory, Australia," Energy Policy, Elsevier, vol. 72(C), pages 14-22.
    20. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Energy, Elsevier, vol. 77(C), pages 414-421.

    More about this item

    Keywords

    Electricity economics; Feed-in-tariffs; Renewable energy; Wind farms; Solar farms; Price differentiation; Two-part tariffs;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:65:y:2017:i:c:p:458-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.