IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v61y2017icp270-278.html
   My bibliography  Save this article

The role of oil prices in the forecasts of South African interest rates: A Bayesian approach

Author

Listed:
  • Gupta, Rangan
  • Kotzé, Kevin

Abstract

This paper considers whether the use of real oil price data can improve upon the forecasts for the nominal interest rate in South Africa. We employ Bayesian vector autoregressive models that make use of various measures of oil prices and compare the forecasting results of these models with those that do not make use of this data. The real oil price data is also disaggregated into positive and negative components to establish whether this would improve upon the forecasting performance of the model. The full dataset includes quarterly measures of output, consumer prices, exchange rates, interest rates and oil prices, where the initial in-sample period extends from 1979q1 to 1997q4. We then perform recursive estimations and one- to eight-step ahead forecasts over the out-of-sample period 1998q1 to 2014q4. The results suggest that the models that include information relating to oil prices outperform the model that does not include this information, when comparing their out-of-sample properties. In addition, the model with the positive component of oil price tends to perform better than other models over the short to medium horizons. Then lastly, the model that includes both the positive and negative components of the oil price, provides superior forecasts over longer horizons, where the improvement is large enough to ensure that it is the best forecasting model on average. Hence, not only do real oil prices matter when forecasting interest rates, but the use of disaggregate oil price data may facilitate additional improvements.

Suggested Citation

  • Gupta, Rangan & Kotzé, Kevin, 2017. "The role of oil prices in the forecasts of South African interest rates: A Bayesian approach," Energy Economics, Elsevier, vol. 61(C), pages 270-278.
  • Handle: RePEc:eee:eneeco:v:61:y:2017:i:c:p:270-278
    DOI: 10.1016/j.eneco.2016.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988316303383
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    2. Cabral, Luís & Fishman, Arthur, 2012. "Business as usual: A consumer search theory of sticky prices and asymmetric price adjustment," International Journal of Industrial Organization, Elsevier, vol. 30(4), pages 371-376.
    3. Christiane Baumeister & Gert Peersman & Ine Van Robays, 2010. "The Economic Consequences of Oil Shocks: Differences across Countries and Time," RBA Annual Conference Volume (Discontinued),in: Renée Fry & Callum Jones & Christopher Kent (ed.), Inflation in an Era of Relative Price Shocks Reserve Bank of Australia.
    4. Laurence M. Ball, 1999. "Policy Rules for Open Economies," NBER Chapters, in: Monetary Policy Rules, pages 127-156, National Bureau of Economic Research, Inc.
    5. Vasco Cúrdia & Michael Woodford, 2010. "Conventional and unconventional monetary policy," Review, Federal Reserve Bank of St. Louis, issue May, pages 229-264.
    6. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    7. Sims, Christopher A, 1980. "Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered," American Economic Review, American Economic Association, vol. 70(2), pages 250-257, May.
    8. Mehmet Balcilar & Reneé van Eyden & Josine Uwilingiye & Rangan Gupta, 2017. "The Impact of Oil Price on South African GDP Growth: A Bayesian Markov Switching-VAR Analysis," African Development Review, African Development Bank, vol. 29(2), pages 319-336, June.
    9. repec:wly:japmet:v:25:y:2010:i:1:p:71-92 is not listed on IDEAS
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Lutz Kilian & Logan T. Lewis, 2011. "Does the Fed Respond to Oil Price Shocks?," Economic Journal, Royal Economic Society, vol. 121(555), pages 1047-1072, September.
    12. Robert B. Litterman, 1979. "Techniques of forecasting using vector autoregressions," Working Papers 115, Federal Reserve Bank of Minneapolis.
    13. Balcilar, Mehmet & Gupta, Rangan & Miller, Stephen M., 2015. "Regime switching model of US crude oil and stock market prices: 1859 to 2013," Energy Economics, Elsevier, vol. 49(C), pages 317-327.
    14. Gupta, Rangan & Modise, Mampho P., 2013. "Does the source of oil price shocks matter for South African stock returns? A structural VAR approach," Energy Economics, Elsevier, vol. 40(C), pages 825-831.
    15. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    16. Mehmet Balcilar & Shinhye Chang & Rangan Gupta & Vanessa Kasongo & Clement Kyei, 2014. "The Relationship between Oil and Agricultural Commodity Prices: A Quantile Causality Approach," Working Papers 201468, University of Pretoria, Department of Economics.
    17. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
    18. Granger, Clive W.J. & YOON, GAWON, 2002. "Hidden Cointegration," University of California at San Diego, Economics Working Paper Series qt9qn5f61j, Department of Economics, UC San Diego.
    19. Aye, Goodness C. & Dadam, Vincent & Gupta, Rangan & Mamba, Bonginkosi, 2014. "Oil price uncertainty and manufacturing production," Energy Economics, Elsevier, vol. 43(C), pages 41-47.
    20. Sam Peltzman, 2000. "Prices Rise Faster than They Fall," Journal of Political Economy, University of Chicago Press, vol. 108(3), pages 466-502, June.
    21. Rangan Gupta & Patrick T. Kanda & Mampho P. Modise & Alessia Paccagnini, 2015. "DSGE model-based forecasting of modelled and nonmodelled inflation variables in South Africa," Applied Economics, Taylor & Francis Journals, vol. 47(3), pages 207-221, January.
    22. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters,in: Business Cycles, Indicators, and Forecasting, pages 179-212 National Bureau of Economic Research, Inc.
    23. Emmanuel Dhyne & Luis J. Alvarez & Herve Le Bihan & Giovanni Veronese & Daniel Dias & Johannes Hoffmann & Nicole Jonker & Patrick Lunnemann & Fabio Rumler & Jouko Vilmunen, 2006. "Price Changes in the Euro Area and the United States: Some Facts from Individual Consumer Price Data," Journal of Economic Perspectives, American Economic Association, vol. 20(2), pages 171-192, Spring.
    24. Rangan Gupta & Patrick T. Kanda, 2014. "Does the Price of Oil Help Predict Inflation in South Africa? Historical Evidence Using a Frequency Domain Approach," Working Papers 201401, University of Pretoria, Department of Economics.
    25. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    26. Vasco Curdia & Michael Woodford, 2010. "Credit Spreads and Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(s1), pages 3-35, September.
    27. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    28. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    29. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    30. Carolyn Chisadza & Janneke Dlamini & Rangan Gupta & Mampho P. Modise, 2013. "The Impact of Oil Shocks on the South African Economy," Working Papers 201311, University of Pretoria, Department of Economics.
    31. Hamilton, James D & Herrera, Ana Maria, 2004. "Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy: Comment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 265-286, April.
    32. Kaufmann, Robert K. & Gonzalez, Nancy & Nickerson, Thomas A. & Nesbit, Tyler S., 2011. "Do household energy expenditures affect mortgage delinquency rates?," Energy Economics, Elsevier, vol. 33(2), pages 188-194, March.
    33. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    34. Goodness C. Aye & Olorato Gadinabokao & Rangan Gupta, 2014. "Does the South African Reserve Bank (SARB) Respond to Oil Price Movements? Historical Evidence from the Frequency Domain," Working Papers 201425, University of Pretoria, Department of Economics.
    35. Roberto Motto & Massimo Rostagno & Lawrence J. Christiano, 2010. "Financial Factors in Economic Fluctuations," 2010 Meeting Papers 141, Society for Economic Dynamics.
    36. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    37. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    38. Mehmet Balcilar & Josine Uwilingiye & Rangan Gupta, 2018. "Dynamic Relationship Between Oil Price And Inflation In South Africa," Journal of Developing Areas, Tennessee State University, College of Business, vol. 52(2), pages 73-93, April-Jun.
    39. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    40. Bernanke, Ben S & Gertler, Mark & Watson, Mark W, 2004. "Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy: Reply," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 287-291, April.
    41. Rangan Gupta & Patrick T. kanda & Mampho P. Modise & Alessia Paccagnini, 2013. "DSGE Model-Based Forecasting of Modeled and Non-Modeled Inflation Variables in South Africa," Working Papers 201374, University of Pretoria, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Interest rate; Oil price; Forecasting; South Africa;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:61:y:2017:i:c:p:270-278. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.