IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Is certainty in carbon policy better than uncertainty?

Listed author(s):
  • Chen, Liang
  • Kettunen, Janne
Registered author(s):

    Uncertainty in the strictness of carbon policy can have significant impacts on power generating firms’ capacity investment decisions and market outcomes. We investigate the effects of this policy uncertainty on firms’ expected profits, consumers’ surplus, and firms’ cost for reaching a CO2 emission target. Our results, derived from a game-theoretical model, and applied to realistic data, indicate that uncertainty in the carbon policy induces more capacity investments in fossil and renewable technologies. We find that it is optimal for firms with higher risk aversion to invest more in renewable technologies than their less risk-averse rivals. For policy makers, our results suggest counter-intuitively that retaining the flexibility to update emission targets, whilst causing uncertainty in the carbon policy, is beneficial. This is because it provides higher expected consumer surplus and lower expected electricity price. Power generating firms are also better off under the policy uncertainty by having lower expected costs for reaching the emission goal and higher expected profits when firms’ risk-aversions are low. These results support the approach, employed in European power markets, to periodically update the CO2 emission cap depending on the prevailing circumstances, rather than having certainty in the decrements of the caps over a longer time horizon. Our insights can help policy makers and firms to make better decisions by understanding how carbon policy uncertainty impacts the optimal capacity investments and how these investments might depend on the firms’ heterogeneity in risk aversion.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716306725
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 258 (2017)
    Issue (Month): 1 ()
    Pages: 230-243

    as
    in new window

    Handle: RePEc:eee:ejores:v:258:y:2017:i:1:p:230-243
    DOI: 10.1016/j.ejor.2016.08.033
    Contact details of provider: Web page: http://www.elsevier.com/locate/eor

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Genc, Talat S. & Reynolds, Stanley S. & Sen, Suvrajeet, 2007. "Dynamic oligopolistic games under uncertainty: A stochastic programming approach," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 55-80, January.
    2. Garcia-Diaz, Anton & Marin, Pedro L., 2003. "Strategic bidding in electricity pools with short-lived bids: an application to the Spanish market," International Journal of Industrial Organization, Elsevier, vol. 21(2), pages 201-222, February.
    3. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
    4. Kanudia, Amit & Loulou, Richard, 1998. "Robust responses to climate change via stochastic MARKAL: The case of Quebec," European Journal of Operational Research, Elsevier, vol. 106(1), pages 15-30, April.
    5. Catherine D. Wolfram, 1999. "Measuring Duopoly Power in the British Electricity Spot Market," American Economic Review, American Economic Association, vol. 89(4), pages 805-826, September.
    6. Egging, Ruud & Gabriel, Steven A. & Holz, Franziska & Zhuang, Jifang, 2008. "A complementarity model for the European natural gas market," Energy Policy, Elsevier, vol. 36(7), pages 2385-2414, July.
    7. Ben S. Bernanke, 1983. "Irreversibility, Uncertainty, and Cyclical Investment," The Quarterly Journal of Economics, Oxford University Press, vol. 98(1), pages 85-106.
    8. Hu, Ming-Che & Hobbs, Benjamin F., 2010. "Analysis of multi-pollutant policies for the U.S. power sector under technology and policy uncertainty using MARKAL," Energy, Elsevier, vol. 35(12), pages 5430-5442.
    9. Fleten, Stein-Erik & Hoyland, Kjetil & Wallace, Stein W., 2002. "The performance of stochastic dynamic and fixed mix portfolio models," European Journal of Operational Research, Elsevier, vol. 140(1), pages 37-49, July.
    10. Tim Nelson & Simon Kelley & Fiona Orton & Paul Simshauser, 2010. "Delayed Carbon Policy Certainty and Electricity Prices in Australia," Economic Papers, The Economic Society of Australia, vol. 29(4), pages 446-465, December.
    11. Gabriel, Steven A. & Zhuang, Jifang & Egging, Ruud, 2009. "Solving stochastic complementarity problems in energy market modeling using scenario reduction," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1028-1040, September.
    12. Erin Baker & Senay Solak, 2014. "Management of Energy Technology for Sustainability: How to Fund Energy Technology Research and Development," Production and Operations Management, Production and Operations Management Society, vol. 23(3), pages 348-365, March.
    13. Janne Kettunen, Derek W. Bunn and William Blyth & Derek W. Bunn & William Blyth, 2011. "Investment Propensities under Carbon Policy Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 77-118.
    14. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    15. Dorea Chin & Afzal Siddiqui, 2014. "Capacity expansion and forward contracting in a duopolistic power sector," Computational Management Science, Springer, vol. 11(1), pages 57-86, January.
    16. Fan, Lin & Hobbs, Benjamin F. & Norman, Catherine S., 2010. "Risk aversion and CO2 regulatory uncertainty in power generation investment: Policy and modeling implications," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 193-208, November.
    17. Yangfang (Helen) Zhou & Alan Scheller-Wolf & Nicola Secomandi & Stephen Smith, 2016. "Electricity Trading and Negative Prices: Storage vs. Disposal," Management Science, INFORMS, vol. 62(3), pages 880-898, March.
    18. Rothschild, Michael & Stiglitz, Joseph E., 1971. "Increasing risk II: Its economic consequences," Journal of Economic Theory, Elsevier, vol. 3(1), pages 66-84, March.
    19. Baker, Erin & Solak, Senay, 2011. "Climate change and optimal energy technology R&D policy," European Journal of Operational Research, Elsevier, vol. 213(2), pages 442-454, September.
    20. Filomena, Tiago Pascoal & Campos-Náñez, Enrique & Duffey, Michael Robert, 2014. "Technology selection and capacity investment under uncertainty," European Journal of Operational Research, Elsevier, vol. 232(1), pages 125-136.
    21. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    22. Jan A. Van Mieghem, 2003. "Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 269-302, July.
    23. Kettunen, Janne & Bunn, Derek W., 2016. "Risk induced resource dependency in capacity investments," European Journal of Operational Research, Elsevier, vol. 250(3), pages 914-924.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:258:y:2017:i:1:p:230-243. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.