IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v190y2021ics0308521x21000275.html
   My bibliography  Save this article

Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction

Author

Listed:
  • Shang, Linmei
  • Heckelei, Thomas
  • Gerullis, Maria K.
  • Börner, Jan
  • Rasch, Sebastian

Abstract

Adoption and diffusion of digital farming technologies are expected to help transform current agricultural systems towards sustainability. To enable and steer transformation we need to understand the mechanisms of adoption and diffusion holistically. Our current understanding is mainly informed by empirical farm-level adoption studies and by agent-based models simulating systemic diffusion mechanisms. These two approaches are weakly integrated.

Suggested Citation

  • Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:agisys:v:190:y:2021:i:c:s0308521x21000275
    DOI: 10.1016/j.agsy.2021.103074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X21000275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2021.103074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alastair Brown, 2014. "Adaptation and mitigation," Nature Climate Change, Nature, vol. 4(10), pages 860-860, October.
    2. Eliana Lima & Thomas Hopkins & Emma Gurney & Orla Shortall & Fiona Lovatt & Peers Davies & George Williamson & Jasmeet Kaler, 2018. "Drivers for precision livestock technology adoption: A study of factors associated with adoption of electronic identification technology by commercial sheep farmers in England and Wales," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-17, January.
    3. A. Arneth & C. Brown & M. D. A. Rounsevell, 2014. "Erratum: Global models of human decision-making for land-based mitigation and adaptation assessment," Nature Climate Change, Nature, vol. 4(8), pages 736-736, August.
    4. Gabriel S. Sampson & Edward D. Perry, 2019. "Peer effects in the diffusion of water‐saving agricultural technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 50(6), pages 693-706, November.
    5. Walton, Jonathan C. & Lambert, Dayton M. & Roberts, Roland K. & Larson, James A. & English, Burton C. & Larkin, Sherry L. & Martin, Steven W. & Marra, Michele C. & Paxton, Kenneth W. & Reeves, Jeanne , 2008. "Adoption and Abandonment of Precision Soil Sampling in Cotton Production," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 33(3), pages 1-21.
    6. Chen, Xiaodong & Lupi, Frank & An, Li & Sheely, Ryan & Viña, Andrés & Liu, Jianguo, 2012. "Agent-based modeling of the effects of social norms on enrollment in payments for ecosystem services," Ecological Modelling, Elsevier, vol. 229(C), pages 16-24.
    7. Federica Caffaro & Eugenio Cavallo, 2019. "The Effects of Individual Variables, Farming System Characteristics and Perceived Barriers on Actual Use of Smart Farming Technologies: Evidence from the Piedmont Region, Northwestern Italy," Agriculture, MDPI, vol. 9(5), pages 1-13, May.
    8. Lynne, Gary D. & Franklin Casey, C. & Hodges, Alan & Rahmani, Mohammed, 1995. "Conservation technology adoption decisions and the theory of planned behavior," Journal of Economic Psychology, Elsevier, vol. 16(4), pages 581-598, December.
    9. Takácsné György, Katalin & Lámfalusi, Ibolya & Molnár, András & Sulyok, Dénes & Gaál, Márta & Keményné horváth, Zsuzsanna & Domán, Csaba & Illés, Ivett & Kiss, Andrea & Péter, Krisztina & Kemény, Gábo, 2018. "Precision agriculture in Hungary: assessment of perceptions and accounting records of FADN arable farms," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 120(1), April.
    10. A. Arneth & C. Brown & M. D. A. Rounsevell, 2014. "Global models of human decision-making for land-based mitigation and adaptation assessment," Nature Climate Change, Nature, vol. 4(7), pages 550-557, July.
    11. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    12. Pepijn Schreinemachers & Chakrit Potchanasin & Thomas Berger & Sithidech Roygrong, 2010. "Agent‐based modeling for ex ante assessment of tree crop innovations: litchis in northern Thailand," Agricultural Economics, International Association of Agricultural Economists, vol. 41(6), pages 519-536, November.
    13. Beretta, Elena & Fontana, Magda & Guerzoni, Marco & Jordan, Alexander, 2018. "Cultural dissimilarity: Boon or bane for technology diffusion?," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 95-103.
    14. Huang, Shiyang & Hu, Guiping & Chennault, Carrie & Su, Liu & Brandes, Elke & Heaton, Emily & Schulte, Lisa & Wang, Lizhi & Tyndall, John, 2016. "Agent-based modeling of bioenergy crop adoption and farmer decision-making," Energy, Elsevier, vol. 115(P1), pages 1188-1201.
    15. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    16. Lambert, Dayton M. & Paudel, Krishna P. & Larson, James A., 2015. "Bundled Adoption of Precision Agriculture Technologies by Cotton Producers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(2), pages 1-21, May.
    17. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    18. Giovanni Pino & Pierluigi Toma & Cristian Rizzo & Pier Paolo Miglietta & Alessandro M. Peluso & Gianluigi Guido, 2017. "Determinants of Farmers’ Intention to Adopt Water Saving Measures: Evidence from Italy," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    19. Pepijn Schreinemachers & Thomas Berger & Aer Sirijinda & Suwanna Praneetvatakul, 2009. "The Diffusion of Greenhouse Agriculture in Northern Thailand: Combining Econometrics and Agent‐Based Modeling," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 513-536, December.
    20. Schreinemachers, Pepijn & Berger, Thomas & Aune, Jens B., 2007. "Simulating soil fertility and poverty dynamics in Uganda: A bio-economic multi-agent systems approach," Ecological Economics, Elsevier, vol. 64(2), pages 387-401, December.
    21. Boyer, Christopher N. & Lambert, Dayton M. & Velandia, Margarita & English, Burton C. & Robert, Roland K. & Larson, James A. & Larkin, Sherry L. & Paudel, Krishna P. & Reeves, Jeanne M., 2016. "Cotton Producer Awareness and Participation in Cost-Sharing Programs for Precision Nutrient-Management Technology," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(1), pages 1-16, January.
    22. Lambert, Dayton M. & English, Burton & Harper, David & Larkin, Sherry L. & Laron, James & Mooney, Daniel F. & Roberts, Roland & Velandia, Margarita & Reeves, Jeanne, 2014. "Corrigendum to “Adoption and Frequency of Precision Soil Testing in Cotton Production”," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-1.
    23. Thomas Berger & Regina Birner & Nancy Mccarthy & JosÉ DíAz & Heidi Wittmer, 2007. "Capturing the complexity of water uses and water users within a multi-agent framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 129-148, January.
    24. Berger, Thomas, 2001. "Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 245-260, September.
    25. Kuehne, Geoff & Llewellyn, Rick & Pannell, David J. & Wilkinson, Roger & Dolling, Perry & Ouzman, Jackie & Ewing, Mike, 2017. "Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy," Agricultural Systems, Elsevier, vol. 156(C), pages 115-125.
    26. François J Dessart & Jesús Barreiro-Hurlé & René van Bavel, 2019. "Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 46(3), pages 417-471.
    27. Barnes, A.P. & Soto, I. & Eory, V. & Beck, B. & Balafoutis, A. & Sánchez, B. & Vangeyte, J. & Fountas, S. & van der Wal, T. & Gómez-Barbero, M., 2019. "Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers," Land Use Policy, Elsevier, vol. 80(C), pages 163-174.
    28. Appel, Franziska & Ostermeyer-Wiethaup, Arlette & Balmann, Alfons, 2016. "Effects of the German Renewable Energy Act on structural change in agriculture – The case of biogas," Utilities Policy, Elsevier, vol. 41(C), pages 172-182.
    29. Alfons Weersink & Murray Fulton, 2020. "Limits to Profit Maximization as a Guide to Behavior Change," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 67-79, March.
    30. Pivoto, Diesson & Barham, Bradford & Dabdab, Paulo & Zhang, Debin & Talamin, Edson, 2019. "Factors influencing the adoption of smart farming by Brazilian grain farmers," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 22(4), April.
    31. Abdulai, Awudu & Owusu, Victor & Goetz, Renan, 2011. "Land tenure differences and investment in land improvement measures: Theoretical and empirical analyses," Journal of Development Economics, Elsevier, vol. 96(1), pages 66-78, September.
    32. Robert Finger & Scott M. Swinton & Nadja El Benni & Achim Walter, 2019. "Precision Farming at the Nexus of Agricultural Production and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 313-335, October.
    33. Lambert, Dayton M. & English, Burton C. & Harper, David C. & Larkin, Sherry L. & Larson, James A. & Mooney, Daniel F. & Roberts, Roland K. & Velandia, Margarita & Reeves, Jeanne M., 2014. "Adoption and Frequency of Precision Soil Testing in Cotton Production," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(1), pages 1-18, April.
    34. Steven J. H. Shiau & Chi-Yo Huang & Chia-Lee Yang & Jer-Nan Juang, 2018. "A Derivation of Factors Influencing the Innovation Diffusion of the OpenStreetMap in STEM Education," Sustainability, MDPI, vol. 10(10), pages 1-29, September.
    35. Bell, Andrew & Parkhurst, Gregory & Droppelmann, Klaus & Benton, Tim G., 2016. "Scaling up pro-environmental agricultural practice using agglomeration payments: Proof of concept from an agent-based model," Ecological Economics, Elsevier, vol. 126(C), pages 32-41.
    36. Guillaume Deffuant, 2006. "Comparing Extremism Propagation Patterns in Continuous Opinion Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(3), pages 1-8.
    37. Antoni Perello-Moragues & Pablo Noriega & Manel Poch, 2019. "Modelling Contingent Technology Adoption in Farming Irrigation Communities," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(4), pages 1-1.
    38. Sorda, G. & Sunak, Y. & Madlener, R., 2013. "An agent-based spatial simulation to evaluate the promotion of electricity from agricultural biogas plants in Germany," Ecological Economics, Elsevier, vol. 89(C), pages 43-60.
    39. Menard, Scott, 2004. "Six Approaches to Calculating Standardized Logistic Regression Coefficients," The American Statistician, American Statistical Association, vol. 58, pages 218-223, August.
    40. Qing Xu & Sylvie Huet & Eric Perret & Guillaume Deffuant, 2020. "Do Farm Characteristics or Social Dynamics Explain the Conversion to Organic Farming by Dairy Farmers? An Agent-Based Model of Dairy Farming in 27 French Cantons," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-4.
    41. Schlüter, Maja & Baeza, Andres & Dressler, Gunnar & Frank, Karin & Groeneveld, Jürgen & Jager, Wander & Janssen, Marco A. & McAllister, Ryan R.J. & Müller, Birgit & Orach, Kirill & Schwarz, Nina & Wij, 2017. "A framework for mapping and comparing behavioural theories in models of social-ecological systems," Ecological Economics, Elsevier, vol. 131(C), pages 21-35.
    42. Kaufmann, Peter & Stagl, Sigrid & Franks, Daniel W., 2009. "Simulating the diffusion of organic farming practices in two New EU Member States," Ecological Economics, Elsevier, vol. 68(10), pages 2580-2593, August.
    43. Kaifang Zheng & Suling Jia, 2017. "Promoting the Opportunity Identification of Industrial Symbiosis: Agent-Based Modeling Inspired by Innovation Diffusion Theory," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    44. D'Antoni, Jeremy M. & Mishra, Ashok K. & Powell, Rebekah R. & Martin, Steven W., 2012. "Farmers’ Perception of Precision Technology: The Case of Autosteer Adoption by Cotton Farmers," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119734, Southern Agricultural Economics Association.
    45. Georgina Moreno & David L. Sunding, 2005. "Joint Estimation of Technology Adoption and Land Allocation with Implications for the Design of Conservation Policy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1009-1019.
    46. Schimmelpfennig, David & Ebel, Robert, 2016. "Sequential Adoption and Cost Savings from Precision Agriculture," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margherita Masi & Marcello Rosa & Yari Vecchio & Luca Bartoli & Felice Adinolfi, 2022. "The long way to innovation adoption: insights from precision agriculture," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-17, December.
    2. Khanna, Madhu & Atallah, Shadi & Kar, Saurajyoti & Sharma, Bijay & Wu, Linghui & Yu, Chengzheng, 2021. "Digital Transformation for a Sustainable Agriculture in the US: Opportunities and Challenges," 2021 Conference, August 17-31, 2021, Virtual 313799, International Association of Agricultural Economists.
    3. Charlton, Diane & Hill, Alexandra E. & Taylor, J. Edward, 2022. "Automation and social impacts: winners and losers," ESA Working Papers 330793, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    4. Lioutas, Evagelos D. & Charatsari, Chrysanthi & De Rosa, Marcello, 2021. "Digitalization of agriculture: A way to solve the food problem or a trolley dilemma?," Technology in Society, Elsevier, vol. 67(C).
    5. Monteiro Moretti, Débora & Baum, Chad M. & Ehlers, Melf-Hinrich & Finger, Robert & Bröring, Stefanie, 2023. "Exploring actors' perceptions of the precision agriculture innovation system – A Group Concept Mapping approach in Germany and Switzerland," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    6. Jang, Hyunmi & Haddoud, Mohamed Yacine & Roh, Saeyeon & Onjewu, Adah-Kole Emmanuel & Choi, Taeeun, 2023. "Implementing smart factory: A fuzzy-set analysis to uncover successful paths," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    7. Seidel, Claudia & Shang, Linmei & Britz, Wolfgang, 2023. "A critical assessment of neural networks as meta-model of a farm optimization model," Discussion Papers 338200, University of Bonn, Institute for Food and Resource Economics.
    8. Wang, Tong & Jin, Hailong & Sieverding, Heidi L. & Rao, Xudong & Miao, Yuxin & Kumar, Sandeep & Redfearn, Daren & Nafchi, Ali, 2022. "Understanding farmer perceptions of precision agriculture profitability in the U.S. Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322502, Agricultural and Applied Economics Association.
    9. Khanna, Madhu, 2021. "Digital Transformation for a Sustainable Agriculture: Opportunities and Challenges," 2021 Conference, August 17-31, 2021, Virtual 315052, International Association of Agricultural Economists.
    10. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    11. Gerli, Paolo & Clement, Jessica & Esposito, Giovanni & Mora, Luca & Crutzen, Nathalie, 2022. "The hidden power of emotions: How psychological factors influence skill development in smart technology adoption," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    12. Basharat Ali & Peter Dahlhaus, 2022. "Roles of Selective Agriculture Practices in Sustainable Agricultural Performance: A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    13. Huber, Robert & Späti, Karin & Finger, Robert, 2023. "A behavioural agent-based modelling approach for the ex-ante assessment of policies supporting precision agriculture," Ecological Economics, Elsevier, vol. 212(C).
    14. da Silveira, Franco & da Silva, Sabrina Letícia Couto & Machado, Filipe Molinar & Barbedo, Jayme Garcia Arnal & Amaral, Fernando Gonçalves, 2023. "Farmers' perception of the barriers that hinder the implementation of agriculture 4.0," Agricultural Systems, Elsevier, vol. 208(C).
    15. Ollerenshaw, Alison & Murphy, Angela & Walters, Judi & Robinson, Nathan & Thompson, Helen, 2023. "Use of digital technology for research data and information transfer within the Australian grains sector: A case study using Online Farm Trials," Agricultural Systems, Elsevier, vol. 206(C).
    16. Eirini Aivazidou & Naoum Tsolakis, 2023. "Transitioning towards human–robot synergy in agriculture: A systems thinking perspective," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(3), pages 536-551, May.
    17. Schulz, Dario & Börner, Jan, 2021. "Context and Technology Traits Explain Heterogeneity Across Adoption Studies of Agricultural Innovations: A Global Meta-Analysis," 2021 Conference, August 17-31, 2021, Virtual 315003, International Association of Agricultural Economists.
    18. Paulus, Michael & Pfaff, Sara Anna, 2022. "Factors Affecting the Diffusion of Digital Farming Towards More Resilient Farming Systems - Empirical Evidence from Baden-Württemberg," 62nd Annual Conference, Stuttgart, Germany, September 7-9, 2022 329597, German Association of Agricultural Economists (GEWISOLA).
    19. Giua, Carlo & Materia, Valentina Cristiana & Camanzi, Luca, 2022. "Smart farming technologies adoption: Which factors play a role in the digital transition?," Technology in Society, Elsevier, vol. 68(C).
    20. Kuhn, T. & Möhring, N. & Töpel, A. & Jakob, F. & Britz, W. & Bröring, S. & Pich, A. & Schwaneberg, U. & Rennings, M., 2022. "Using a bio-economic farm model to evaluate the economic potential and pesticide load reduction of the greenRelease technology," Agricultural Systems, Elsevier, vol. 201(C).
    21. Wang, Tong & Jin, Hailong & Sieverding, Heidi & Kumar, Sandeep & Miao, Yuxin & Rao, Xudong & Obembe, Oladipo & Mirzakhani Nafchi, Ali & Redfearn, Daren & Cheye, Stephen, 2023. "Understanding farmer views of precision agriculture profitability in the U.S. Midwest," Ecological Economics, Elsevier, vol. 213(C).
    22. Tilman Reinhardt, 2023. "The farm to fork strategy and the digital transformation of the agrifood sector—An assessment from the perspective of innovation systems," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(2), pages 819-838, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).
    2. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).
    3. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    4. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    5. Barnes, A.P. & Soto, I. & Eory, V. & Beck, B. & Balafoutis, A. & Sánchez, B. & Vangeyte, J. & Fountas, S. & van der Wal, T. & Gómez-Barbero, M., 2019. "Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers," Land Use Policy, Elsevier, vol. 80(C), pages 163-174.
    6. Yari Vecchio & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Fabian Capitanio, 2020. "Adoption of Precision Farming Tools: The Case of Italian Farmers," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    7. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    8. Kolosz, B.W. & Athanasiadis, I.N. & Cadisch, G. & Dawson, T.P. & Giupponi, C. & Honzák, M. & Martinez-Lopez, J. & Marvuglia, A. & Mojtahed, V. & Ogutu, K.B.Z. & Van Delden, H. & Villa, F. & Balbi, S., 2018. "Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land," Ecosystem Services, Elsevier, vol. 33(PA), pages 29-39.
    9. Hanson, Erik D. & Cossette, Max K. & Roberts, David C., 2022. "The adoption and usage of precision agriculture technologies in North Dakota," Technology in Society, Elsevier, vol. 71(C).
    10. Huber, Robert & Späti, Karin & Finger, Robert, 2023. "A behavioural agent-based modelling approach for the ex-ante assessment of policies supporting precision agriculture," Ecological Economics, Elsevier, vol. 212(C).
    11. Bourceret, Amélie & Amblard, Laurence & Mathias, Jean-Denis, 2022. "Adapting the governance of social–ecological systems to behavioural dynamics: An agent-based model for water quality management using the theory of planned behaviour," Ecological Economics, Elsevier, vol. 194(C).
    12. Thomas Berger & Christian Troost & Tesfamicheal Wossen & Evgeny Latynskiy & Kindie Tesfaye & Sika Gbegbelegbe, 2017. "Can smallholder farmers adapt to climate variability, and how effective are policy interventions? Agent-based simulation results for Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(6), pages 693-706, November.
    13. Quang, Dang Viet & Schreinemachers, Pepijn & Berger, Thomas, 2014. "Ex-ante assessment of soil conservation methods in the uplands of Vietnam: An agent-based modeling approach," Agricultural Systems, Elsevier, vol. 123(C), pages 108-119.
    14. Grovermann, Christian & Schreinemachers, Pepijn & Riwthong, Suthathip & Berger, Thomas, 2017. "‘Smart’ policies to reduce pesticide use and avoid income trade-offs: An agent-based model applied to Thai agriculture," Ecological Economics, Elsevier, vol. 132(C), pages 91-103.
    15. Vecchio, Yari & De Rosa, Marcello & Adinolfi, Felice & Bartoli, Luca & Masi, Margherita, 2020. "Adoption of precision farming tools: A context-related analysis," Land Use Policy, Elsevier, vol. 94(C).
    16. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    17. Grovermann, Christian & Schreinemachers, Pepijn & Berger, Thomas, 2015. "Evaluation of IPM adoption and financial instruments to reduce pesticide use in Thai agriculture using econometrics and agent-based modeling," 2015 Conference, August 9-14, 2015, Milan, Italy 211690, International Association of Agricultural Economists.
    18. Carauta, Marcelo & Troost, Christian & Guzman-Bustamante, Ivan & Hampf, Anna & Libera, Affonso & Meurer, Katharina & Bönecke, Eric & Franko, Uwe & Ribeiro Rodrigues, Renato de Aragão & Berger, Thomas, 2021. "Climate-related land use policies in Brazil: How much has been achieved with economic incentives in agriculture?," Land Use Policy, Elsevier, vol. 109(C).
    19. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    20. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.

    More about this item

    Keywords

    Technology adoption; Innovation diffusion; Digital farming; Agent-based modeling; Farm level; systematic review;
    All these keywords.

    JEL classification:

    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:190:y:2021:i:c:s0308521x21000275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.