IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v167y2018icp143-160.html
   My bibliography  Save this article

Representation of decision-making in European agricultural agent-based models

Author

Listed:
  • Huber, Robert
  • Bakker, Martha
  • Balmann, Alfons
  • Berger, Thomas
  • Bithell, Mike
  • Brown, Calum
  • Grêt-Regamey, Adrienne
  • Xiong, Hang
  • Le, Quang Bao
  • Mack, Gabriele
  • Meyfroidt, Patrick
  • Millington, James
  • Müller, Birgit
  • Polhill, J. Gareth
  • Sun, Zhanli
  • Seidl, Roman
  • Troost, Christian
  • Finger, Robert

Abstract

The use of agent-based modelling approaches in ex-post and ex-ante evaluations of agricultural policies has been progressively increasing over the last few years. There are now a sufficient number of models that it is worth taking stock of the way these models have been developed. Here, we review 20 agricultural agent-based models (ABM) addressing heterogeneous decision-making processes in the context of European agriculture. The goals of this review were to i) develop a framework describing aspects of farmers' decision-making that are relevant from a farm-systems perspective, ii) reveal the current state-of-the-art in representing farmers' decision-making in the European agricultural sector, and iii) provide a critical reflection of underdeveloped research areas and on future opportunities in modelling decision-making. To compare different approaches in modelling farmers' behaviour, we focused on the European agricultural sector, which presents a specific character with its family farms, its single market and the common agricultural policy (CAP). We identified several key properties of farmers' decision-making: the multi-output nature of production; the importance of non-agricultural activities; heterogeneous household and family characteristics; and the need for concurrent short- and long-term decision-making. These properties were then used to define levels and types of decision-making mechanisms to structure a literature review. We find most models are sophisticated in the representation of farm exit and entry decisions, as well as the representation of long-term decisions and the consideration of farming styles or types using farm typologies. Considerably fewer attempts to model farmers' emotions, values, learning, risk and uncertainty or social interactions occur in the different case studies. We conclude that there is considerable scope to improve diversity in representation of decision-making and the integration of social interactions in agricultural agent-based modelling approaches by combining existing modelling approaches and promoting model inter-comparisons. Thus, this review provides a valuable entry point for agent-based modellers, agricultural systems modellers and data driven social scientists for the re-use and sharing of model components, code and data. An intensified dialogue could fertilize more coordinated and purposeful combinations and comparisons of ABM and other modelling approaches as well as better reconciliation of empirical data and theoretical foundations, which ultimately are key to developing improved models of agricultural systems.

Suggested Citation

  • Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
  • Handle: RePEc:eee:agisys:v:167:y:2018:i:c:p:143-160
    DOI: 10.1016/j.agsy.2018.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17309228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Happe, Kathrin & Balmann, Alfons & Kellermann, Konrad & Sahrbacher, Christoph, 2008. "Does structure matter? The impact of switching the agricultural policy regime on farm structures," Journal of Economic Behavior & Organization, Elsevier, vol. 67(2), pages 431-444, August.
    2. Happe, K. & Hutchings, N.J. & Dalgaard, T. & Kellerman, K., 2011. "Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation," Agricultural Systems, Elsevier, vol. 104(3), pages 281-291, March.
    3. Alastair Brown, 2014. "Adaptation and mitigation," Nature Climate Change, Nature, vol. 4(10), pages 860-860, October.
    4. Catherine Benjamin & Ayal Kimhi, 2006. "Farm work, off-farm work, and hired farm labour: estimating a discrete-choice model of French farm couples' labour decisions," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 33(2), pages 149-171, June.
    5. A. Arneth & C. Brown & M. D. A. Rounsevell, 2014. "Global models of human decision-making for land-based mitigation and adaptation assessment," Nature Climate Change, Nature, vol. 4(7), pages 550-557, July.
    6. Feola, Giuseppe & Binder, Claudia R., 2010. "Towards an improved understanding of farmers' behaviour: The integrative agent-centred (IAC) framework," Ecological Economics, Elsevier, vol. 69(12), pages 2323-2333, October.
    7. Liesbeth Colen & Sergio Gomez y Paloma & Uwe Latacz-Lohmann & Marianne Lefebvre & Raphaële Préget & Sophie Thoyer, 2016. "Economic Experiments as a Tool for Agricultural Policy Evaluation: Insights from the European CAP," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(4), pages 667-694, December.
    8. Dent, J. B. & Edwards-Jones, G. & McGregor, M. J., 1995. "Simulation of ecological, social and economic factors in agricultural systems," Agricultural Systems, Elsevier, vol. 49(4), pages 337-351.
    9. Peter Howley, 2015. "The Happy Farmer: The Effect of Nonpecuniary Benefits on Behavior," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(4), pages 1072-1086.
    10. Gunnar Breustedt & Thomas Glauben, 2007. "Driving Forces behind Exiting from Farming in Western Europe," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(1), pages 115-127, February.
    11. Renwick, Alan W. & Jansson, Torbjorn & Verburg, Peter H. & Revoredo-Giha, Cesar & Britz, Wolfgang & Gocht, Alexander & McCracken, Davy, 2011. "Policy Reform and Agricultural Land Abandonment," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108772, Agricultural Economics Society.
    12. Thomas Berger & Christian Troost, 2014. "Agent-based Modelling of Climate Adaptation and Mitigation Options in Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 65(2), pages 323-348, June.
    13. James Millington & Raúl Romero-Calcerrada & John Wainwright & George Perry, 2008. "An Agent-Based Model of Mediterranean Agricultural Land-Use/Cover Change for Examining Wildfire Risk," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(4), pages 1-4.
    14. Christian Troost & Thomas Berger, 2015. "Dealing with Uncertainty in Agent-Based Simulation: Farm-Level Modeling of Adaptation to Climate Change in Southwest Germany," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 833-854.
    15. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    16. J. Gareth Polhill & Dawn C. Parker & Daniel Brown & Volker Grimm, 2008. "Using the ODD Protocol for Describing Three Agent-Based Social Simulation Models of Land-Use Change," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-3.
    17. Graeub, Benjamin E. & Chappell, M. Jahi & Wittman, Hannah & Ledermann, Samuel & Kerr, Rachel Bezner & Gemmill-Herren, Barbara, 2016. "The State of Family Farms in the World," World Development, Elsevier, vol. 87(C), pages 1-15.
    18. Nicholas R Magliocca & Daniel G Brown & Erle C Ellis, 2014. "Cross-Site Comparison of Land-Use Decision-Making and Its Consequences across Land Systems with a Generalized Agent-Based Model," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-14, January.
    19. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    20. Evgeny Latynskiy & Thomas Berger, 2017. "Assessing the Income Effects of Group Certification for Smallholder Coffee Farmers: Agent-based Simulation in Uganda," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(3), pages 727-748, September.
    21. Roeder, Norbert & Lederbogen, Dirk & Trautner, Juergen & Bergamini, Ariel & Stofer, Silvia & Scheidegger, Christoph, 2010. "The impact of changing agricultural policies on jointly used rough pastures in the Bavarian Pre-Alps: An economic and ecological scenario approach," Ecological Economics, Elsevier, vol. 69(12), pages 2435-2447, October.
    22. Bell, Andrew & Parkhurst, Gregory & Droppelmann, Klaus & Benton, Tim G., 2016. "Scaling up pro-environmental agricultural practice using agglomeration payments: Proof of concept from an agent-based model," Ecological Economics, Elsevier, vol. 126(C), pages 32-41.
    23. Levine, Jordan & Chan, Kai M.A. & Satterfield, Terre, 2015. "From rational actor to efficient complexity manager: Exorcising the ghost of Homo economicus with a unified synthesis of cognition research," Ecological Economics, Elsevier, vol. 114(C), pages 22-32.
    24. Guillem, E.E. & Murray-Rust, D. & Robinson, D.T. & Barnes, A. & Rounsevell, M.D.A., 2015. "Modelling farmer decision-making to anticipate tradeoffs between provisioning ecosystem services and biodiversity," Agricultural Systems, Elsevier, vol. 137(C), pages 12-23.
    25. Lee, Ju-Sung & Filatova, Tatiana & Ligmann-Zielinska, Arika & Hassani-Mahmooei, Behrooz & Stonedahl, Forrest & Lorscheid, Iris & Voinov, Alexey & Polhill, J. Gareth & Sun, Zhanli & Parker, Dawn C., 2015. "The complexities of agent-based modeling output analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 18(4).
    26. Schlüter, Maja & Baeza, Andres & Dressler, Gunnar & Frank, Karin & Groeneveld, Jürgen & Jager, Wander & Janssen, Marco A. & McAllister, Ryan R.J. & Müller, Birgit & Orach, Kirill & Schwarz, Nina & Wij, 2017. "A framework for mapping and comparing behavioural theories in models of social-ecological systems," Ecological Economics, Elsevier, vol. 131(C), pages 21-35.
    27. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    28. van Ittersum, Martin K. & Ewert, Frank & Heckelei, Thomas & Wery, Jacques & Alkan Olsson, Johanna & Andersen, Erling & Bezlepkina, Irina & Brouwer, Floor & Donatelli, Marcello & Flichman, Guillermo & , 2008. "Integrated assessment of agricultural systems - A component-based framework for the European Union (SEAMLESS)," Agricultural Systems, Elsevier, vol. 96(1-3), pages 150-165, March.
    29. Julia Maria Brändle & Gaby Langendijk & Simon Peter & Sibyl Hanna Brunner & Robert Huber, 2015. "Sensitivity Analysis of a Land-Use Change Model with and without Agents to Assess Land Abandonment and Long-Term Re-Forestation in a Swiss Mountain Region," Land, MDPI, vol. 4(2), pages 1-38, June.
    30. Liesbeth Colen & Sergio Gomez y Paloma & Uwe Latacz-Lohmann & Marianne Lefebvre & Raphaële Préget & Sophie Thoyer, 2016. "Economic Experiments as a Tool for Agricultural Policy Evaluation: Insights from the European CAP," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(4), pages 667-694, December.
    31. Albert Zimmermann & Anke Möhring & Gabriele Mack & Ali Ferjani & Stefan Mann, 2015. "Pathways to Truth: Comparing Different Upscaling Options for an Agent-Based Sector Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-11.
    32. Matthias Meyer & Iris Lorscheid & Klaus G. Troitzsch, 2009. "The Development of Social Simulation as Reflected in the First Ten Years of JASSS: a Citation and Co-Citation Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-12.
    33. James Nolan & Dawn Parker & G. Cornelis Van Kooten & Thomas Berger, 2009. "An Overview of Computational Modeling in Agricultural and Resource Economics," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 417-429, December.
    34. A. Arneth & C. Brown & M. D. A. Rounsevell, 2014. "Erratum: Global models of human decision-making for land-based mitigation and adaptation assessment," Nature Climate Change, Nature, vol. 4(8), pages 736-736, August.
    35. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    36. Chen, Xiaodong & Lupi, Frank & An, Li & Sheely, Ryan & Viña, Andrés & Liu, Jianguo, 2012. "Agent-based modeling of the effects of social norms on enrollment in payments for ecosystem services," Ecological Modelling, Elsevier, vol. 229(C), pages 16-24.
    37. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    38. Pavel Ciaian & Maria Espinosa Goded & Sergio Gomez y Paloma & Thomas Heckelei & Stephen Langrell & Kamel Louhichi & Paolo Sckokai & Alban Thomas & Thierry Vard, 2013. "Farm level modelling of CAP: a methodological overview [Modélisation de la PAC au niveau de l'exploitation: un aperçu méthodologique]," Working Papers hal-02810895, HAL.
    39. Lilli Aline Schroeder & Alexander Gocht & Wolfgang Britz, 2015. "The Impact of Pillar II Funding: Validation from a Modelling and Evaluation Perspective," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(2), pages 415-441, June.
    40. Thomas Berger & Christian Troost & Tesfamicheal Wossen & Evgeny Latynskiy & Kindie Tesfaye & Sika Gbegbelegbe, 2017. "Can smallholder farmers adapt to climate variability, and how effective are policy interventions? Agent-based simulation results for Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(6), pages 693-706, November.
    41. Pierre Livet & Denis Phan & Lena Sanders, 2008. "Why do we need Ontology for Agent-Based Models?," Lecture Notes in Economics and Mathematical Systems, in: Klaus Schredelseker & Florian Hauser (ed.), Complexity and Artificial Markets, chapter 11, pages 133-145, Springer.
    42. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    43. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    44. Malawska, Anna & Topping, Christopher John, 2016. "Evaluating the role of behavioral factors and practical constraints in the performance of an agent-based model of farmer decision making," Agricultural Systems, Elsevier, vol. 143(C), pages 136-146.
    45. Bart Van der Straeten & Jeroen Buysse & Stephan Nolte & Ludwig Lauwers & Dakerlia Claeys & Guido Van Huylenbroeck, 2010. "A multi-agent simulation model for spatial optimisation of manure allocation," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 53(8), pages 1011-1030.
    46. François Rebaudo & Olivier Dangles, 2011. "Coupled Information Diffusion–Pest Dynamics Models Predict Delayed Benefits of Farmer Cooperation in Pest Management Programs," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-10, October.
    47. Peter Howley & Emma Dillon & Thia Hennessy, 2014. "It’s not all about the money: understanding farmers’ labor allocation choices," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(2), pages 261-271, June.
    48. Benjamin, Catherine & Kimhi, Ayal, 2003. "Farm Work, Off-Farm Work, And Hired Farm Labor: Estimating A Discrete-Choice Model Of French Farm Couples' Labor Decisions," Discussion Papers 14990, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    49. Abler, David, 2004. "Multifunctionality, Agricultural Policy, and Environmental Policy," Agricultural and Resource Economics Review, Cambridge University Press, vol. 33(1), pages 8-17, April.
    50. Jule Thober & Birgit Müller & Jürgen Groeneveld & Volker Grimm, 2017. "Agent-Based Modelling of Social-Ecological Systems: Achievements, Challenges, and a Way Forward," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(2), pages 1-8.
    51. Tina Balke & Nigel Gilbert, 2014. "How Do Agents Make Decisions? A Survey," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(4), pages 1-13.
    52. Elizabeth Bruch & Jon Atwell, 2015. "Agent-Based Models in Empirical Social Research," Sociological Methods & Research, , vol. 44(2), pages 186-221, May.
    53. Jule Schulze & Karin Frank & Joerg A Priess & Markus A Meyer, 2016. "Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-21, April.
    54. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    55. Rianne Duinen & Tatiana Filatova & Wander Jager & Anne Veen, 2016. "Going beyond perfect rationality: drought risk, economic choices and the influence of social networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 57(2), pages 335-369, November.
    56. Dimitris Kremmydas, 2012. "Agent based modeling for agricultural policy evaluation: A review," Working Papers 2012-3, Agricultural University of Athens, Department Of Agricultural Economics.
    57. Peter Howley & Emma Dillon & Kevin Heanue & David Meredith, 2017. "Worth the Risk? The Behavioural Path to Well-Being," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 534-552, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    2. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    3. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    4. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    5. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    6. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    7. Egger, Claudine & Plutzar, Christoph & Mayer, Andreas & Dullinger, Iwona & Dullinger, Stefan & Essl, Franz & Gattringer, Andreas & Bohner, Andreas & Haberl, Helmut & Gaube, Veronika, 2022. "Using the SECLAND model to project future land-use until 2050 under climate and socioeconomic change in the LTSER region Eisenwurzen (Austria)," Ecological Economics, Elsevier, vol. 201(C).
    8. F. LeRon Shults & Wesley J. Wildman, 2020. "Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections," Sustainability, MDPI, vol. 12(23), pages 1-16, December.
    9. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    10. An, Li & Grimm, Volker & Sullivan, Abigail & Turner II, B.L. & Malleson, Nicolas & Heppenstall, Alison & Vincenot, Christian & Robinson, Derek & Ye, Xinyue & Liu, Jianguo & Lindkvist, Emilie & Tang, W, 2021. "Challenges, tasks, and opportunities in modeling agent-based complex systems," Ecological Modelling, Elsevier, vol. 457(C).
    11. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    12. Mössinger, Johannes & Troost, Christian & Berger, Thomas, 2022. "Bridging the gap between models and users: A lightweight mobile interface for optimized farming decisions in interactive modeling sessions," Agricultural Systems, Elsevier, vol. 195(C).
    13. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Carauta, Marcelo & Troost, Christian & Guzman-Bustamante, Ivan & Hampf, Anna & Libera, Affonso & Meurer, Katharina & Bönecke, Eric & Franko, Uwe & Ribeiro Rodrigues, Renato de Aragão & Berger, Thomas, 2021. "Climate-related land use policies in Brazil: How much has been achieved with economic incentives in agriculture?," Land Use Policy, Elsevier, vol. 109(C).
    15. Christian Troost & Julia Parussis-Krech & Matías Mejaíl & Thomas Berger, 2023. "Boosting the Scalability of Farm-Level Models: Efficient Surrogate Modeling of Compositional Simulation Output," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 721-759, October.
    16. Kolosz, B.W. & Athanasiadis, I.N. & Cadisch, G. & Dawson, T.P. & Giupponi, C. & Honzák, M. & Martinez-Lopez, J. & Marvuglia, A. & Mojtahed, V. & Ogutu, K.B.Z. & Van Delden, H. & Villa, F. & Balbi, S., 2018. "Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land," Ecosystem Services, Elsevier, vol. 33(PA), pages 29-39.
    17. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    18. Malawska, Anna & Topping, Christopher John, 2016. "Evaluating the role of behavioral factors and practical constraints in the performance of an agent-based model of farmer decision making," Agricultural Systems, Elsevier, vol. 143(C), pages 136-146.
    19. Reinhard, Stijn & Naranjo, María A. & Polman, Nico & Hennen, Wil, 2022. "Modelling choices and social interactions with a threshold public good: Investment decisions in a polder in Bangladesh," Land Use Policy, Elsevier, vol. 113(C).
    20. Williams, T.G. & Guikema, S.D. & Brown, D.G. & Agrawal, A., 2020. "Resilience and equity: Quantifying the distributional effects of resilience-enhancing strategies in a smallholder agricultural system," Agricultural Systems, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:167:y:2018:i:c:p:143-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.