IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p10039-d454536.html
   My bibliography  Save this article

Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections

Author

Listed:
  • F. LeRon Shults

    (Institute for Global Development and Planning, University of Agder, 4630 Kristiansand, Norway)

  • Wesley J. Wildman

    (School of Theology, Boston University, Boston, MA 02215, USA
    Faculty of Computing and Data Sciences, Boston University, Boston, MA 02215, USA
    Center for Mind and Culture, Boston, MA 02215, USA)

Abstract

This article begins with a brief outline of recent advances in the application of computer modeling to sustainability research, identifying important gaps in coverage and associated limits in methodological capability, particularly in regard to taking account of the tangled human factors that are often impediments to a sustainable future. It then describes some of the ways in which a new transdisciplinary approach within “human simulation” can contribute to the further development of sustainability modeling, more effectively addressing such human factors through its emphasis on stakeholder, policy professional, and subject matter expert participation, and its focus on constructing more realistic cognitive architectures and artificial societies. Finally, the article offers philosophical reflections on some of the ontological, epistemological, and ethical issues raised at the intersection of sustainability research and social simulation, considered in light of the importance of human factors, including values and worldviews, in the modeling process. Based on this philosophical analysis, we encourage more explicit conversations about the value of naturalism and secularism in finding and facilitating effective and ethical strategies for sustainable development.

Suggested Citation

  • F. LeRon Shults & Wesley J. Wildman, 2020. "Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections," Sustainability, MDPI, vol. 12(23), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10039-:d:454536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/10039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/10039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alastair Brown, 2014. "Adaptation and mitigation," Nature Climate Change, Nature, vol. 4(10), pages 860-860, October.
    2. Hovi, Jon & Sprinz, Detlef F. & Sælen, Håkon & Underdal, Arild, 2019. "The Club Approach: A Gateway to Effective Climate Co-operation?," British Journal of Political Science, Cambridge University Press, vol. 49(3), pages 1071-1096, July.
    3. Flaminio Squazzoni & J. Gareth Polhill & Bruce Edmonds & Petra Ahrweiler & Patrycja Antosz & Geeske Scholz & Emile Chappin & Melania Borit & Harko Verhagen & Francesca Giardini & Nigel Gilbert, 2020. "Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-10.
    4. A. Arneth & C. Brown & M. D. A. Rounsevell, 2014. "Global models of human decision-making for land-based mitigation and adaptation assessment," Nature Climate Change, Nature, vol. 4(7), pages 550-557, July.
    5. Ross Gore & Carlos Lemos & F. LeRon Shults & Wesley Wildman, 2018. "Forecasting Changes in Religiosity and Existential Security with an Agent-Based Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(1), pages 1-4.
    6. Christophe Deissenberg & Sander van Der Hoog & Herbert Dawid, 2008. "EURACE: A Massively Parallel Agent-Based Model of the European Economy," Working Papers halshs-00339756, HAL.
    7. Giulia Sonetti & Martin Brown & Emanuele Naboni, 2019. "About the Triggering of UN Sustainable Development Goals and Regenerative Sustainability in Higher Education," Sustainability, MDPI, vol. 11(1), pages 1-17, January.
    8. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    9. Jonathan Köhler & Fjalar de Haan & Georg Holtz & Klaus Kubeczko & Enayat Moallemi & George Papachristos & Emile Chappin, 2018. "Modelling Sustainability Transitions: An Assessment of Approaches and Challenges," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(1), pages 1-8.
    10. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, December.
    11. Huimin Yan & Lihu Pan & Zhichao Xue & Lin Zhen & Xuehong Bai & Yunfeng Hu & He-Qing Huang, 2019. "Agent-Based Modeling of Sustainable Ecological Consumption for Grasslands: A Case Study of Inner Mongolia, China," Sustainability, MDPI, vol. 11(8), pages 1-24, April.
    12. F. LeRon Shults & Ross Gore & Wesley Wildman & Christopher Lynch & Justin E. Lane & Monica Toft, 2018. "A Generative Model of the Mutual Escalation of Anxiety Between Religious Groups," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(4), pages 1-7.
    13. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    14. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    15. Brian Beckage & Louis J. Gross & Katherine Lacasse & Eric Carr & Sara S. Metcalf & Jonathan M. Winter & Peter D. Howe & Nina Fefferman & Travis Franck & Asim Zia & Ann Kinzig & Forrest M. Hoffman, 2018. "Linking models of human behaviour and climate alters projected climate change," Nature Climate Change, Nature, vol. 8(1), pages 79-84, January.
    16. Schlüter, Maja & Baeza, Andres & Dressler, Gunnar & Frank, Karin & Groeneveld, Jürgen & Jager, Wander & Janssen, Marco A. & McAllister, Ryan R.J. & Müller, Birgit & Orach, Kirill & Schwarz, Nina & Wij, 2017. "A framework for mapping and comparing behavioural theories in models of social-ecological systems," Ecological Economics, Elsevier, vol. 131(C), pages 21-35.
    17. repec:cup:judgdm:v:15:y:2020:i:4:p:476-498 is not listed on IDEAS
    18. A. Arneth & C. Brown & M. D. A. Rounsevell, 2014. "Erratum: Global models of human decision-making for land-based mitigation and adaptation assessment," Nature Climate Change, Nature, vol. 4(8), pages 736-736, August.
    19. Janssen, Marco & de Vries, Bert, 1998. "The battle of perspectives: a multi-agent model with adaptive responses to climate change," Ecological Economics, Elsevier, vol. 26(1), pages 43-65, July.
    20. Jule Thober & Birgit Müller & Jürgen Groeneveld & Volker Grimm, 2017. "Agent-Based Modelling of Social-Ecological Systems: Achievements, Challenges, and a Way Forward," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(2), pages 1-8.
    21. Christine Boshuijzen-van Burken & Ross Gore & Frank Dignum & Lamber Royakkers & Phillip Wozny & F. LeRon Shults, 2020. "Agent-Based Modelling of Values: The Case of Value Sensitive Design for Refugee Logistics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(4), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Tolk & Jennifer A. Richkus & F. LeRon Shults & Wesley J. Wildman, 2023. "Computational Decision Support for Socio-Technical Awareness of Land-Use Planning under Complexity—A Dam Resilience Planning Case Study," Land, MDPI, vol. 12(5), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    2. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    3. Kolosz, B.W. & Athanasiadis, I.N. & Cadisch, G. & Dawson, T.P. & Giupponi, C. & Honzák, M. & Martinez-Lopez, J. & Marvuglia, A. & Mojtahed, V. & Ogutu, K.B.Z. & Van Delden, H. & Villa, F. & Balbi, S., 2018. "Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land," Ecosystem Services, Elsevier, vol. 33(PA), pages 29-39.
    4. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    5. Calum Brown & Dave Murray-Rust & Jasper van Vliet & Shah Jamal Alam & Peter H Verburg & Mark D Rounsevell, 2014. "Experiments in Globalisation, Food Security and Land Use Decision Making," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-24, December.
    6. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    7. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    8. Bernardo A. Furtado & Miguel A. Fuentes & Claudio J. Tessone, 2019. "Policy Modeling and Applications: State-of-the-Art and Perspectives," Complexity, Hindawi, vol. 2019, pages 1-11, February.
    9. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    10. Christy Anderson Brekken & Hikaru Hanawa Peterson & Robert P. King & David Conner, 2018. "Writing a Recipe for Teaching Sustainable Food Systems: Lessons from Three University Courses," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    11. Mitja Steinbacher & Matthias Raddant & Fariba Karimi & Eva Camacho Cuena & Simone Alfarano & Giulia Iori & Thomas Lux, 2021. "Advances in the agent-based modeling of economic and social behavior," SN Business & Economics, Springer, vol. 1(7), pages 1-24, July.
    12. Lintao Liu & Shouchao Yu & Hengjia Zhang & Yong Wang & Chao Liang, 2023. "Analysis of Land Use Change Drivers and Simulation of Different Future Scenarios: Taking Shanxi Province of China as an Example," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    13. An, Li & Grimm, Volker & Sullivan, Abigail & Turner II, B.L. & Malleson, Nicolas & Heppenstall, Alison & Vincenot, Christian & Robinson, Derek & Ye, Xinyue & Liu, Jianguo & Lindkvist, Emilie & Tang, W, 2021. "Challenges, tasks, and opportunities in modeling agent-based complex systems," Ecological Modelling, Elsevier, vol. 457(C).
    14. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    15. Bourceret, Amélie & Amblard, Laurence & Mathias, Jean-Denis, 2022. "Adapting the governance of social–ecological systems to behavioural dynamics: An agent-based model for water quality management using the theory of planned behaviour," Ecological Economics, Elsevier, vol. 194(C).
    16. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    17. Meike Will & Jürgen Groeneveld & Karin Frank & Birgit Müller, 2021. "Informal risk-sharing between smallholders may be threatened by formal insurance: Lessons from a stylized agent-based model," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
    18. Bai, Yuping & Deng, Xiangzheng & Cheng, Yunfei & Hu, Yecui & Zhang, Lijin, 2021. "Exploring regional land use dynamics under shared socioeconomic pathways: A case study in Inner Mongolia, China," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    19. Blanco, Victor & Holzhauer, Sascha & Brown, Calum & Lagergren, Fredrik & Vulturius, Gregor & Lindeskog, Mats & Rounsevell, Mark D.A., 2017. "The effect of forest owner decision-making, climatic change and societal demands on land-use change and ecosystem service provision in Sweden," Ecosystem Services, Elsevier, vol. 23(C), pages 174-208.
    20. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10039-:d:454536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.