IDEAS home Printed from https://ideas.repec.org/r/tpr/restat/v87y2005i3p503-522.html
   My bibliography  Save this item

Nonstationarities in Stock Returns

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 326-360, Summer.
  2. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
  3. Fryzlewicz, Piotr & Oh, H. S., 2011. "Thick pen transformation for time series," LSE Research Online Documents on Economics 37663, London School of Economics and Political Science, LSE Library.
  4. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
  5. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org.
  6. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
  7. Gürtler, Marc & Rauh, Ronald, 2012. "Challenging traditional risk models by a non-stationary approach with nonparametric heteroscedasticity," Working Papers IF41V1, Technische Universität Braunschweig, Institute of Finance.
  8. Gao, Jiti & Robinson, Peter M., 2016. "Inference On Nonstationary Time Series With Moving Mean," Econometric Theory, Cambridge University Press, vol. 32(02), pages 431-457, April.
  9. Bill Russell & Dooruj Rambaccussing, 2016. "Breaks and the Statistical Process of Inflation: The Case of the ‘Modern’ Phillips Curve," Dundee Discussion Papers in Economics 294, Economic Studies, University of Dundee.
  10. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2008. "Normalized least-squares estimation in time-varying ARCH models," LSE Research Online Documents on Economics 25187, London School of Economics and Political Science, LSE Library.
  11. Fried, Roland, 2012. "On the online estimation of local constant volatilities," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3080-3090.
  12. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
  13. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. " Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
  14. Todea, Alexandru & Platon, Diana, 2012. "Sudden Changes In Volatility In Central And Eastern Europe Foreign Exchange Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 38-51, June.
  15. Krämer, Walter & Tameze, Baudouin & Christou, Konstantinos, 2012. "On the origin of high persistence in GARCH-models," Economics Letters, Elsevier, vol. 114(1), pages 72-75.
  16. Xie, Yingfu, 2007. "Maximum likelihood estimation and forecasting for GARCH, Markov switching, and locally stationary wavelet processes," Department of Forest Economics publications 1594, Swedish University of Agricultural Sciences, Department of forest economics.
  17. Gabriel Rodríguez, 2016. " Modeling Latin-American Stock and Forex Markets Volatility: Empirical Application of a Model with Random Level Shifts and Genuine Long Memory [Modelando la volatilidad de los mercados bursátiles y ca," Documentos de Trabajo / Working Papers 2016-416, Departamento de Economía - Pontificia Universidad Católica del Perú.
  18. Heejoon Han & Shen Zhang, 2012. "Non‐stationary non‐parametric volatility model," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 204-225, June.
  19. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
  20. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
  21. David Neto & Sylvain Sardy & Paul Tseng, 2009. "l1-Penalized Likelihood Smoothing of Volatility Processes allowing for Abrupt Changes," Research Papers by the Institute of Economics and Econometrics, Geneva School of Economics and Management, University of Geneva 2009.05, Institut d'Economie et Econométrie, Université de Genève.
  22. Gürtler, Marc & Rauh, Ronald, 2009. "Shortcomings of a parametric VaR approach and nonparametric improvements based on a non-stationary return series model," Working Papers IF32V2, Technische Universität Braunschweig, Institute of Finance.
  23. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
  24. Barunik, Jozef & Krehlik, Tomas, 2016. "Measuring the frequency dynamics of financial and macroeconomic connectedness," FinMaP-Working Papers 54, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
  25. Xu, Jiawen & Perron, Pierre, 2014. "Forecasting return volatility: Level shifts with varying jump probability and mean reversion," International Journal of Forecasting, Elsevier, vol. 30(3), pages 449-463.
  26. Arnaud Dufays & Maciej Augustyniak & Luc Bauwens, 2016. "A new approach to volatility modeling: the High-Dimensional Markov model," Cahiers de recherche 1609, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
  27. Xu, Ke-Li, 2013. "Power monotonicity in detecting volatility levels change," Economics Letters, Elsevier, vol. 121(1), pages 64-69.
  28. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
  29. Chatzikonstanti, Vasiliki & Venetis, Ioannis A., 2015. "Long memory in log-range series: Do structural breaks matter?," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 104-113.
  30. J. Polzehl & V. Spokoiny & C. Starica, 2004. "When did the 2001 recession really start?," Econometrics 0411017, EconWPA.
  31. Pawe{l} Fiedor, 2014. "Maximum Entropy Production Principle for Stock Returns," Papers 1408.3728, arXiv.org.
  32. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
  33. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
  34. Gürtler, Marc & Kreiss, Jens-Peter & Rauh, Ronald, 2009. "A non-stationary approach for financial returns with nonparametric heteroscedasticity," Working Papers IF31V2, Technische Universität Braunschweig, Institute of Finance.
  35. Matteo Luciani & David Veredas, 2012. "A model for vast panels of volatilities," Working Papers 1230, Banco de España;Working Papers Homepage.
  36. Dominique Guégan & Philippe Peretti, 2013. "An omnibus test to detect time-heterogeneity in time series," Computational Statistics, Springer, vol. 28(3), pages 1225-1239, June.
  37. Amado, Cristina & Teräsvirta, Timo, 2014. "Modelling changes in the unconditional variance of long stock return series," Journal of Empirical Finance, Elsevier, vol. 25(C), pages 15-35.
  38. Babikir, Ali & Gupta, Rangan & Mwabutwa, Chance & Owusu-Sekyere, Emmanuel, 2012. "Structural breaks and GARCH models of stock return volatility: The case of South Africa," Economic Modelling, Elsevier, vol. 29(6), pages 2435-2443.
  39. Dominique Guegan & Philippe de Peretti, 2011. "Tests of Structural Changes in Conditional Distributions with Unknown Changepoints," Documents de travail du Centre d'Economie de la Sorbonne 11042, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  40. Farooq Malik, 2015. "Revisiting the relationship between risk and return," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 25-40, January.
  41. Dominique Guegan & Philippe De Peretti, 2012. "An Omnibus Test to Detect Time-Heterogeneity in Time Series," Working Papers halshs-00721327, HAL.
  42. Pascalau, Razvan & Thomann, Christian & Gregoriou, Greg N., 2010. "Unconditional mean, Volatility and the Fourier-Garch representation," MPRA Paper 35932, University Library of Munich, Germany.
  43. Zhongjun Qu & Pierre Perron, 2008. "A Stochastic Volatility Model with Random Level Shifts: Theory and Applications to S&P 500 and NASDAQ Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-007, Boston University - Department of Economics.
  44. repec:hal:journl:halshs-00187875 is not listed on IDEAS
  45. repec:eee:eneeco:v:65:y:2017:i:c:p:208-218 is not listed on IDEAS
  46. repec:hal:journl:halshs-00511995 is not listed on IDEAS
  47. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
  48. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
  49. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
  50. Antonios Antypas & Phoebe Koundouri & Nikolaos Kourogenis, "undated". "Volatility Trends and Optimal Portfolios: the Case of Agricultural Commodities," DEOS Working Papers 1113, Athens University of Economics and Business.
  51. Jörg Polzehl & Vladimir Spokoiny, 2006. "Varying coefficient GARCH versus local constant volatility modeling. Comparison of the predictive power," SFB 649 Discussion Papers SFB649DP2006-033, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  52. Gürtler, Marc & Rauh, Ronald, 2013. "Empirical studies in a multivariate non-stationary, nonparametric regression model for financial returns," Working Papers IF43V1, Technische Universität Braunschweig, Institute of Finance.
  53. Dick van Dijk & Haris Munandar & Christian Hafner, 2011. "The euro introduction and noneuro currencies," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 95-116.
  54. C. Stéphan & S. Skander, 2003. "Statistical analysis of financial time series under the assuption of local stationarity," THEMA Working Papers 2003-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  55. Ahamada, Ibrahim & Jolivaldt, Philippe, 2013. "Time-spectral density and wavelets approaches. Comparative study. Applications to SP500 returns and US GDP," Economic Modelling, Elsevier, vol. 31(C), pages 460-466.
  56. Sancetta, A. & Nikanrova, A., 2005. "Forecasting and Prequential Validation for Time Varying Meta-Elliptical Distributions with a Study of Commodity Futures Prices," Cambridge Working Papers in Economics 0516, Faculty of Economics, University of Cambridge.
  57. Ewing, Bradley T. & Malik, Farooq, 2016. "Volatility spillovers between oil prices and the stock market under structural breaks," Global Finance Journal, Elsevier, vol. 29(C), pages 12-23.
  58. Belkhouja, Mustapha & Boutahary, Mohamed, 2011. "Modeling volatility with time-varying FIGARCH models," Economic Modelling, Elsevier, vol. 28(3), pages 1106-1116, May.
  59. Křehlík, Tomáš & Baruník, Jozef, 2017. "Cyclical properties of supply-side and demand-side shocks in oil-based commodity markets," Energy Economics, Elsevier, vol. 65(C), pages 208-218.
  60. David Neto & Sylvain Sardy, 2012. "Moments structure of ℓ 1 -stochastic volatility models," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(6), pages 1947-1952, October.
  61. Cizek, P., 2010. "Modelling Conditional Heteroscedasticity in Nonstationary Series," Discussion Paper 2010-84, Tilburg University, Center for Economic Research.
  62. Catalin Starica & Stefano Herzel & Tomas Nord, 2005. "Why does the GARCH(1,1) model fail to provide sensible longer- horizon volatility forecasts?," Econometrics 0508003, EconWPA.
  63. Idier, J., 2006. "Stock exchanges industry consolidation and shock transmission," Working papers 159, Banque de France.
  64. repec:bla:jorssb:v:79:y:2017:i:5:p:1391-1414 is not listed on IDEAS
  65. Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
  66. Adnen Ben Nasr & Mohamed Boutahar & Abdelwahed Trabelsi, 2010. "Fractionally integrated time varying GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 399-430, August.
  67. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2015. "Shifts in volatility driven by large stock market shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 130-147.
  68. Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model," Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
  69. Dominique Guégan, 2009. "A Meta-Distribution for Non-Stationary Samples," CREATES Research Papers 2009-24, Department of Economics and Business Economics, Aarhus University.
  70. Hood, Matthew & Malik, Farooq, 2013. "Is gold the best hedge and a safe haven under changing stock market volatility?," Review of Financial Economics, Elsevier, vol. 22(2), pages 47-52.
  71. Davies, Laurie & Höhenrieder, Christian & Krämer, Walter, 2012. "Recursive computation of piecewise constant volatilities," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3623-3631.
  72. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
  73. Andrés Herrera Aramburú & Gabriel Rodríguez, 2016. "Volatility of stock market and exchange rate returns in Peru: Long memory or short memory with level shifts?," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 45-66.
  74. Laurie Davies & Walter Kramer, 2016. "Stylized Facts and Simulating Long Range Financial Data," Papers 1612.05229, arXiv.org.
  75. Laurie Davies & Walter Kraemer, 2016. "Stylized Facts and Simulating Long Range Financial Data," CESifo Working Paper Series 5796, CESifo Group Munich.
  76. Matteo Luciani & David Veredas, "undated". "A simple model for vast panels of volatilities," ULB Institutional Repository 2013/136239, ULB -- Universite Libre de Bruxelles.
  77. Gao, Jiti & Robinson, Peter M., 2014. "Inference on nonstationary time series with moving mean," LSE Research Online Documents on Economics 66509, London School of Economics and Political Science, LSE Library.
  78. Ewing, Bradley T. & Malik, Farooq, 2013. "Volatility transmission between gold and oil futures under structural breaks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 113-121.
  79. repec:eee:eneeco:v:63:y:2017:i:c:p:227-233 is not listed on IDEAS
  80. repec:eee:ecofin:v:42:y:2017:i:c:p:393-420 is not listed on IDEAS
  81. Robinson, Peter M., 2012. "Nonparametric trending regression with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 4-14.
  82. Axioglou, Christos & Skouras, Spyros, 2011. "Markets change every day: Evidence from the memory of trade direction," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 423-446, June.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.