IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0508003.html
   My bibliography  Save this paper

Why does the GARCH(1,1) model fail to provide sensible longer- horizon volatility forecasts?

Author

Listed:
  • Catalin Starica

    (Chalmers & Gothenburg University)

  • Stefano Herzel

    (University of Perugia)

  • Tomas Nord

    (Chalmers University of Technology)

Abstract

The paper investigates from an empirical perspective aspects related to the occurrence of the IGARCH effect and to its impact on volatility forecasting. It reports the results of a detailed analysis of twelve samples of returns on financial indexes from major economies (Australia, Austria, Belgium, France, Germany, Japan, Sweden, UK, and US). The study is conducted in a novel, non-stationary modeling framework proposed in Starica and Granger (2005). The analysis shows that samples characterized by more pronounced changes in the unconditional variance display stronger IGARCH effect and pronounced differences between estimated GARCH(1,1) unconditional variance and the sample variance. Moreover, we document particularly poor longer-horizon forecasting performance of the GARCH(1,1) model for samples characterized by strong discrepancy between the two measures of unconditional variance. The periods of poor forecasting behavior can be as long as four years. The forecasting behavior is evaluated through a direct comparison with a naive non-stationary approach and is based on mean square errors (MSE) as well as on an option replicating exercise.

Suggested Citation

  • Catalin Starica & Stefano Herzel & Tomas Nord, 2005. "Why does the GARCH(1,1) model fail to provide sensible longer- horizon volatility forecasts?," Econometrics 0508003, EconWPA.
  • Handle: RePEc:wpa:wuwpem:0508003
    Note: Type of Document - pdf; pages: 35
    as

    Download full text from publisher

    File URL: http://econwpa.repec.org/eps/em/papers/0508/0508003.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
    2. Robert F. Engle & Alex Kane & Jaesun Noh, 1993. "Index-Option Pricing with Stochastic Volatility and the Value of Accurate Variance Forecasts," NBER Working Papers 4519, National Bureau of Economic Research, Inc.
    3. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, EconWPA.
    4. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    5. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    2. Xu, Ke-Li, 2008. "Testing against nonstationary volatility in time series," Economics Letters, Elsevier, vol. 101(3), pages 288-292, December.
    3. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
    4. Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.
    5. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
    6. Igor LEBRUN & Ludovic DOBBELAERE, "undated". "A Macro-econometric Model for the Economy of Lesotho," EcoMod2010 259600102, EcoMod.
    7. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    8. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
    9. Peña Sánchez de Rivera, Daniel & Kaiser Remiro, Regina & Badagian Baharian, Ana Laura, 2013. "The change-point problem and segmentation of processes with conditional heteroskedasticity," DES - Working Papers. Statistics and Econometrics. WS ws131718, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Keywords

    stock returns; volatility forecasting; GARCH(1; 1); IGARCH effect; hedging; non-stationary; longer horizon forecasting;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0508003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: http://econwpa.repec.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.