Why does the GARCH(1,1) model fail to provide sensible longer- horizon volatility forecasts?
Author
Abstract
Suggested Citation
Note: Type of Document - pdf; pages: 35
Download full text from publisher
References listed on IDEAS
- Cătălin Stărică & Clive Granger, 2005.
"Nonstationarities in Stock Returns,"
The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
- Catalin Starica & Clive Granger, 2004. "Non-stationarities in stock returns," Econometrics 0411016, University Library of Munich, Germany.
- Robert F. Engle & Alex Kane & Jaesun Noh, 1993. "Index-Option Pricing with Stochastic Volatility and the Value of Accurate Variance Forecasts," NBER Working Papers 4519, National Bureau of Economic Research, Inc.
- Choi, Youngsoo, 2005. "An analytical approximation to the option formula for the GARCH model," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 149-164.
- Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
- Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
- Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
- Hamilton, James D. & Susmel, Raul, 1994.
"Autoregressive conditional heteroskedasticity and changes in regime,"
Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
- Tom Doan, "undated". "RATS programs to estimate Hamilton-Susmel Markov Switching ARCH model," Statistical Software Components RTZ00083, Boston College Department of Economics.
- J. Polzehl & V. G. Spokoiny, 2000. "Adaptive weights smoothing with applications to image restoration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 335-354.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
- Xu, Ke-Li, 2008. "Testing against nonstationary volatility in time series," Economics Letters, Elsevier, vol. 101(3), pages 288-292, December.
- Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012.
"Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models,"
Energy Economics, Elsevier, vol. 34(1), pages 283-293.
- Mohamed El Hedi Arouri & Amine Lahiani & Khuong Nguyen Duc, 2010. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Working Papers 13, Development and Policies Research Center (DEPOCEN), Vietnam.
- Mohamed AROURI & Amine LAHIANI & D.-K. NGUYEN, 2010. "Forecasting the Conditional Volatility of Oil Spot andFutures Prices with Structural Breaksand Long Memory Models," LEO Working Papers / DR LEO 661, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Mohamed El Hedi Arouri & Duc Khuong Nguyen & Amine Lahiani, 2010. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Working Papers hal-00507831, HAL.
- Aldo Levy & M.H. Arouri & Amine Lahiani & Duc Khuong Nguyen, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Post-Print halshs-01279906, HAL.
- Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.
- Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
- Igor LEBRUN & Ludovic DOBBELAERE, 2010. "A Macro-econometric Model for the Economy of Lesotho," EcoMod2010 259600102, EcoMod.
- Xu, Ke-Li & Phillips, Peter C.B., 2008.
"Adaptive estimation of autoregressive models with time-varying variances,"
Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
- Ke-Li Xu & Peter C.B. Phillips, 2006. "Adaptive Estimation of Autoregressive Models with Time-Varying Variances," Cowles Foundation Discussion Papers 1585, Cowles Foundation for Research in Economics, Yale University.
- Ke-Li Xu & Peter C.B. Phillips, 2006. "Adaptive Estimation of Autoregressive Models with Time-Varying Variances," Cowles Foundation Discussion Papers 1585R, Cowles Foundation for Research in Economics, Yale University, revised Nov 2006.
- Cătălin Stărică & Clive Granger, 2005.
"Nonstationarities in Stock Returns,"
The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
- Catalin Starica & Clive Granger, 2004. "Non-stationarities in stock returns," Econometrics 0411016, University Library of Munich, Germany.
- repec:cte:wsrepe:ws131718 is not listed on IDEAS
- Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gürtler, Marc & Rauh, Ronald, 2012. "Challenging traditional risk models by a non-stationary approach with nonparametric heteroscedasticity," Working Papers IF41V1, Technische Universität Braunschweig, Institute of Finance.
- He, Zhongfang & Maheu, John M., 2010.
"Real time detection of structural breaks in GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
- Zhongfang He & John M Maheu, 2008. "Real Time Detection of Structural Breaks in GARCH Models," Working Papers tecipa-336, University of Toronto, Department of Economics.
- Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Working Paper series 11_09, Rimini Centre for Economic Analysis.
- Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Staff Working Papers 09-31, Bank of Canada.
- Gürtler, Marc & Kreiss, Jens-Peter & Rauh, Ronald, 2009. "A non-stationary approach for financial returns with nonparametric heteroscedasticity," Working Papers IF31V2, Technische Universität Braunschweig, Institute of Finance.
- Farooq Malik, 2015. "Revisiting the relationship between risk and return," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 25-40, January.
- Gürtler, Marc & Rauh, Ronald, 2009. "Shortcomings of a parametric VaR approach and nonparametric improvements based on a non-stationary return series model," Working Papers IF32V2, Technische Universität Braunschweig, Institute of Finance.
- Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016.
"Efficient Gibbs sampling for Markov switching GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
- Monica Billio & Roberto Casarin & Anthony Osuntuyi, 2012. "Efficient Gibbs Sampling for Markov Switching GARCH Models," Working Papers 2012:35, Department of Economics, University of Venice "Ca' Foscari".
- Jorge M. Andraz & Nélia M. Norte, 2017. "Gross domestic product growth, volatility and regime changes nexus: the case of Portugal," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(1), pages 1-16, April.
- Ewing, Bradley T. & Malik, Farooq, 2005. "Re-examining the asymmetric predictability of conditional variances: The role of sudden changes in variance," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2655-2673, October.
- Kramer, Walter & Azamo, Baudouin Tameze, 2007.
"Structural change and estimated persistence in the GARCH(1,1)-model,"
Economics Letters, Elsevier, vol. 97(1), pages 17-23, October.
- Prof. Dr. Walter Krämer & Baudouin Tameze Azamo, "undated". "Structural change and estimated persistence in the GARCH(1,1)-model," Working Papers 5, Business and Social Statistics Department, Technische Universität Dortmund, revised May 2006.
- Babikir, Ali & Gupta, Rangan & Mwabutwa, Chance & Owusu-Sekyere, Emmanuel, 2012.
"Structural breaks and GARCH models of stock return volatility: The case of South Africa,"
Economic Modelling, Elsevier, vol. 29(6), pages 2435-2443.
- Ali Babikir & Rangan Gupta & Chance Mwabutwa & Emmanuel Owusu-Sekyere, 2010. "Structural Breaks and GARCH Models of Stock Return Volatility: The Case of South Africa," Working Papers 201030, University of Pretoria, Department of Economics.
- Kiyotaka Satoyoshi & Hidetoshi Mitsui, 2011. "Empirical Study of Nikkei 225 Options with the Markov Switching GARCH Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(1), pages 55-68, March.
- Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
- Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014.
"Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model,"
Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
- Adnen Ben Nasr & Ahdi N. Ajmi & Rangan Gupta, 2013. "Modeling the Volatility of the Dow Jones Islamic Market World Index Using a Fractionally Integrated Time Varying GARCH (FITVGARCH) Model," Working Papers 201357, University of Pretoria, Department of Economics.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- WenShwo Fang & Stephen M. Miller, 2014.
"Output Growth and its Volatility: The Gold Standard through the Great Moderation,"
Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.
- WenShwo Fang & Stephen M. Miller, 2012. "Output Growth and Its Volatility: The Gold Standard through the Great Moderation," Working Papers 1205, University of Nevada, Las Vegas , Department of Economics.
- WenShwo Fang & Stephen M. Miller, 2012. "Output Growth and Its Volatility: The Gold Standard through the Great Moderation," Working papers 2012-11, University of Connecticut, Department of Economics.
- Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
- Baillie, Richard T. & Morana, Claudio, 2009.
"Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach,"
Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
- Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: an Adaptive FIGARCH Approach," ICER Working Papers - Applied Mathematics Series 11-2007, ICER - International Centre for Economic Research.
- Richard T. Baillie & Claudio Morana, 2014. "Modeling Long Memory and Structural Breaks in Conditional Variances: An Adaptive FIGARCH Approach," Working Papers 593, Queen Mary University of London, School of Economics and Finance.
- Bauwens Luc & Storti Giuseppe, 2009.
"A Component GARCH Model with Time Varying Weights,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-33, May.
- Giuseppe Storti & Luc Bauwens, 2006. "A component GARCH model with time varying weights," Computing in Economics and Finance 2006 388, Society for Computational Economics.
- BAUWENS, Luc & STORTI, Giuseppe, 2007. "A component GARCH model with time varying weights," LIDAM Discussion Papers CORE 2007019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & STORTI, Giuseppe, 2009. "A component GARCH model with time varying weights," LIDAM Reprints CORE 2125, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc, BAUWENS & G., STORTI, 2007. "A Component GARCH Model with Time Varying Weights," Discussion Papers (ECON - Département des Sciences Economiques) 2007012, Université catholique de Louvain, Département des Sciences Economiques.
- Azamo, Baudouin Tameze & Krämer, Walter, 2006. "Structural Change and long memory in the GARCH(1,1)-model," Technical Reports 2006,33, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Baillie, Richard T. & Morana, Claudio, 2009.
"Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach,"
Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
- Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: an Adaptive FIGARCH Approach," ICER Working Papers - Applied Mathematics Series 11-2007, ICER - International Centre for Economic Research.
- Richard T. Baillie & Claudio Morana, 2014. "Modeling Long Memory and Structural Breaks in Conditional Variances: An Adaptive FIGARCH Approach," Working Papers 593, Queen Mary University of London, School of Economics and Finance.
- Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: An Adaptive FIGARCH Approach," Working Papers 593, Queen Mary University of London, School of Economics and Finance.
More about this item
Keywords
stock returns; volatility forecasting; GARCH(1; 1); IGARCH effect; hedging; non-stationary; longer horizon forecasting;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CFN-2005-08-13 (Corporate Finance)
- NEP-ECM-2005-08-13 (Econometrics)
- NEP-ETS-2005-08-13 (Econometric Time Series)
- NEP-FOR-2005-08-13 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0508003. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.