Prediction in locally stationary time series
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fryzlewicz, Piotr & van Bellegem, Sébastien & von Sachs, Rainer, 2003. "Forecasting non-stationary time series by wavelet process modelling," LSE Research Online Documents on Economics 25830, London School of Economics and Political Science, LSE Library.
- Zhou Zhou & Wei Biao Wu, 2010. "Simultaneous inference of linear models with time varying coefficients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 513-531, September.
- James B. Elsner & James P. Kossin & Thomas H. Jagger, 2008. "The increasing intensity of the strongest tropical cyclones," Nature, Nature, vol. 455(7209), pages 92-95, September.
- Timothy L. McMurry & Dimitris N. Politis, 2010. "Banded and tapered estimates for autocovariance matrices and the linear process bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 471-482, November.
- Piotr Fryzlewicz & Sébastien Bellegem & Rainer Sachs, 2003. "Forecasting non-stationary time series by wavelet process modelling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 737-764, December.
- G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
- Cătălin Stărică & Clive Granger, 2005.
"Nonstationarities in Stock Returns,"
The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
- Catalin Starica & Clive Granger, 2004. "Non-stationarities in stock returns," Econometrics 0411016, University Library of Munich, Germany.
- Zhou Zhou, 2013. "Inference for non-stationary time-series autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 508-516, July.
- Van Bellegem, Sebastien & von Sachs, Rainer, 2004. "Forecasting economic time series with unconditional time-varying variance," International Journal of Forecasting, Elsevier, vol. 20(4), pages 611-627.
- Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
- repec:cdl:ucsdec:qt5h9259mb is not listed on IDEAS
- Pierre Perron & Eduardo Zorita & Arthur P. Guillaumin & Adam M. Sykulski & Sofia C. Olhede & Jeffrey J. Early & Jonathan M. Lilly, 2017. "Analysis of Non-Stationary Modulated Time Series with Applications to Oceanographic Surface Flow Measurements," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 668-710, September.
- Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guy Nason & Kara Stevens, 2015. "Bayesian Wavelet Shrinkage of the Haar-Fisz Transformed Wavelet Periodogram," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-24, September.
- I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
- Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
- Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.
- Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
- Marios Sergides & Efstathios Paparoditis, 2009. "Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 800-821, December.
- Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
- Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
- Holger Dette & Subhra Sankar Dhar & Weichi Wu, 2021. "Identifying shifts between two regression curves," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 855-889, October.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Alessandro Cardinali & Guy P. Nason, 2017. "Locally Stationary Wavelet Packet Processes: Basis Selection and Model Fitting," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 151-174, March.
- Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013.
"Robust estimation and forecasting of the long-term seasonal component of electricity spot prices,"
Energy Economics, Elsevier, vol. 39(C), pages 13-27.
- Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafal, 2012. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," MPRA Paper 42563, University Library of Munich, Germany.
- Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2012. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," HSC Research Reports HSC/12/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Čížek, Pavel & Koo, Chao Hui, 2021.
"Jump-preserving varying-coefficient models for nonlinear time series,"
Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
- Cizek, Pavel & Koo, Chao, 2017. "Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series," Discussion Paper 2017-017, Tilburg University, Center for Economic Research.
- Cizek, Pavel & Koo, Chao, 2017. "Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series," Other publications TiSEM c849e96f-3ad1-461e-96c6-f, Tilburg University, School of Economics and Management.
- Triantafyllopoulos, K. & Nason, G.P., 2009. "A note on state space representations of locally stationary wavelet time series," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 50-54, January.
- Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017.
"Quantile spectral analysis for locally stationary time series,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
- Stefan Skowronek & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2014. "Quantile Spectral Analysis for Locally Stationary Time Series," Working Papers ECARES ecares 2014-24, ULB -- Universite Libre de Bruxelles.
- Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2015. "Quantile Spectral Analysis for Locally Stationary Time Series," Working Papers ECARES ECARES 2015-27, ULB -- Universite Libre de Bruxelles.
- Honglu Zhu & Xu Li & Qiao Sun & Ling Nie & Jianxi Yao & Gang Zhao, 2015. "A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks," Energies, MDPI, vol. 9(1), pages 1-15, December.
- Karmakar, Sayar & Richter, Stefan & Wu, Wei Biao, 2022. "Simultaneous inference for time-varying models," Journal of Econometrics, Elsevier, vol. 227(2), pages 408-428.
- Gao, Jiti & Peng, Bin & Wu, Wei Biao & Yan, Yayi, 2024.
"Time-varying multivariate causal processes,"
Journal of Econometrics, Elsevier, vol. 240(1).
- Jiti Gao & Bin Peng & Wei Biao Wu & Yayi Yan, 2022. "Time-Varying Multivariate Causal Processes," Papers 2206.00409, arXiv.org.
- Jiti Gao & Bin Peng & Wei Biao Wu & Yayi Yan, 2022. "Time-Varying Multivariate Causal Processes," Monash Econometrics and Business Statistics Working Papers 8/22, Monash University, Department of Econometrics and Business Statistics.
- Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Inference of Grouped Time-Varying Network Vector Autoregression Models," Monash Econometrics and Business Statistics Working Papers 5/23, Monash University, Department of Econometrics and Business Statistics.
- Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent classification of non-stationary time series using stochastic wavelet representations," LSE Research Online Documents on Economics 25162, London School of Economics and Political Science, LSE Library.
- Amado, Cristina & Teräsvirta, Timo, 2014.
"Modelling changes in the unconditional variance of long stock return series,"
Journal of Empirical Finance, Elsevier, vol. 25(C), pages 15-35.
- Cristina Amado & Timo Teräsvirta, 2012. "Modelling Changes in the Unconditional Variance of Long Stock Return Series," CREATES Research Papers 2012-07, Department of Economics and Business Economics, Aarhus University.
- Cristina Amado & Timo Terasvirta, 2012. "Modelling Changes in the Unconditional Variance of Long Stock Return Series," NIPE Working Papers 02/2012, NIPE - Universidade do Minho.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2020-01-13 (Econometrics)
- NEP-ETS-2020-01-13 (Econometric Time Series)
- NEP-ORE-2020-01-13 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.00419. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.