IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Improving forecast accuracy by combining recursive and rolling forecasts"

by Todd E. Clark & Michael W. McCracken

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window


  1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, Elsevier.
  2. Craig S. Hakkio, 2008. "PCE and CPI inflation differentials: converting inflation forecasts," Economic Review, Federal Reserve Bank of Kansas City, issue Q I, pages 51-68.
  3. Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
  4. Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, 01.
  5. Wu, Jyh-Lin & Wang, Yi-Chiuan, 2013. "Fundamentals, forecast combinations and nominal exchange-rate predictability," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 129-145.
  6. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
  7. Melo, Luis F. & Loaiza, Rubén A. & Villamizar-Villegas, Mauricio, 2016. "Bayesian combination for inflation forecasts: The effects of a prior based on central banks’ estimates," Economic Systems, Elsevier, vol. 40(3), pages 387-397.
  8. Dimitrios D. Thomakos & Fotis Papailias, 2013. "Covariance Averaging for Improved Estimation and Portfolio Allocation," Working Paper Series 66_13, The Rimini Centre for Economic Analysis.
  9. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
  10. Todd E. Clark & Kenneth D. West, 2005. "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference," NBER Technical Working Papers 0305, National Bureau of Economic Research, Inc.
  11. Morales-Arias, Leonardo & Moura, Guilherme V., 2013. "Adaptive forecasting of exchange rates with panel data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 493-509.
  12. M. Hashem Pesaran & Andreas Pick, 2008. "Forecasting Random Walks Under Drift Instability," CESifo Working Paper Series 2293, CESifo Group Munich.
  13. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
  14. Marie Bessec, 2010. "Étalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture," Économie et Prévision, Programme National Persée, vol. 193(2), pages 77-99.
  15. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Forecasting the oil–gasoline price relationship: Do asymmetries help?," Energy Economics, Elsevier, vol. 46(S1), pages 44-56.
  16. Zhao, Huiru & Guo, Sen, 2016. "An optimized grey model for annual power load forecasting," Energy, Elsevier, vol. 107(C), pages 272-286.
  17. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
  18. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
  19. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
  20. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
  21. BAUWENS, Luc & KOOP, Gary & KOROBILIS, Dimitris & ROMBOUTS, Jeroen V. K., 2011. "A comparison of forecasting procedures for macroeconomic series: the contribution of structural break models," CORE Discussion Papers 2011003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  22. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
  23. Mihaela SIMIONESCU, 2014. "Improving The Inflation Rate Forecasts Of Romanian Experts Using A Fixed-Effects Models Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 87-102, June.
  24. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
  25. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
  26. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
  27. Prasad S Bhattacharya & Dimitrios D Thomakos, 2011. "Improving forecasting performance by window and model averaging," CAMA Working Papers 2011-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  28. Todd E. Clark & Michael W. McCracken, 2006. "Forecasting of small macroeconomic VARs in the presence of instabilities," Research Working Paper RWP 06-09, Federal Reserve Bank of Kansas City.
  29. Chanont Banternghansa & Michael W. McCracken, 2011. "Real-time forecast averaging with ALFRED," Review, Federal Reserve Bank of St. Louis, issue Jan, pages 49-66.
  30. Johannes Mayr & Dirk Ulbricht, 2007. "VAR Model Averaging for Multi-Step Forecasting," Ifo Working Paper Series Ifo Working Paper No. 48, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  31. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
  32. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
  33. Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2014. "Forecasting UK GDP growth and inflation under structural change. A comparison of models with time-varying parameters," International Journal of Forecasting, Elsevier, vol. 30(1), pages 129-143.
  34. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
  35. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
  36. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, Open Access Journal, vol. 3(1), pages 1-53, January.
  37. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
  38. Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
  39. Leonardo Morales-Arias & Alexander Dross, 2010. "Adaptive Forecasting of Exchange Rates with Panel Data," Research Paper Series 285, Quantitative Finance Research Centre, University of Technology, Sydney.
  40. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip & Etienne, Xiaoli, 2012. "Composite and Outlook Forecast Accuracy," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), August.
  41. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, Elsevier.
  42. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
  43. Marco Valerio Geraci & Jean-Yves Gnabo, 2015. "Measuring interconnectedness between financial institutions with Bayesian time-varying vector autoregressions," Working Papers ECARES 2015-51, ULB -- Universite Libre de Bruxelles.
  44. Leung, Charles Ka Yui & Tang, Edward Chi Ho, 2014. "Availability, Affordability and Volatility: the case of Hong Kong Housing Market," MPRA Paper 58770, University Library of Munich, Germany.
  45. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
  46. Marco Valerio Geraci & Jean-Yves Gnabo, 2015. "Measuring Interconnectedness between Financial Institutions with Bayesian Time-Varying VARS," Working Papers ECARES ECARES 2015-51, ULB -- Universite Libre de Bruxelles.
  47. Jungmittag, Andre, 2014. "Combination of forecasts across estimation windows: An application to air travel demand," Working Paper Series: Business and Law 05, Frankfurt University of Applied Sciences, Faculty of Business and Law.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.