IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A wavelet based investigation of long memory in stock returns

  • Tan, Pei P.
  • Galagedera, Don U.A.
  • Maharaj, Elizabeth A.

Using a wavelet-based maximum likelihood fractional integration estimator, we test long memory (return predictability) in the returns at the market, industry and firm level. In an analysis of emerging market daily returns over the full sample period, we find that long-memory is not present and in approximately twenty percent of 175 stocks there is evidence of long memory. The absence of long memory in the market returns may be a consequence of contemporaneous aggregation of stock returns. However, when the analysis is carried out with rolling windows evidence of long memory is observed in certain time frames. These results are largely consistent with that of detrended fluctuation analysis. A test of firm-level information in explaining stock return predictability using a logistic regression model reveal that returns of large firms are more likely to possess long memory feature than in the returns of small firms. There is no evidence to suggest that turnover, earnings per share, book-to-market ratio, systematic risk and abnormal return with respect to the market model is associated with return predictability. However, degree of long-range dependence appears to be associated positively with earnings per share, systematic risk and abnormal return and negatively with book-to-market ratio.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0378437111009046
Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

Volume (Year): 391 (2012)
Issue (Month): 7 ()
Pages: 2330-2341

as
in new window

Handle: RePEc:eee:phsmap:v:391:y:2012:i:7:p:2330-2341
Contact details of provider: Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Harvey, Campbell R, 1995. "The Risk Exposure of Emerging Equity Markets," World Bank Economic Review, World Bank Group, vol. 9(1), pages 19-50, January.
  2. Olan Henry, 2002. "Long memory in stock returns: some international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 725-729.
  3. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
  4. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, 02.
  5. Kang, Sang Hoon & Yoon, Seong-Min, 2008. "Long memory features in the high frequency data of the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5189-5196.
  6. Grau-Carles, Pilar, 2000. "Empirical evidence of long-range correlations in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 396-404.
  7. John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
  8. Gian Luca Clementi & Hugo Hopenhayn, 2002. "A Theory of Financing Constraints and Firm Dynamics," RCER Working Papers 492, University of Rochester - Center for Economic Research (RCER).
  9. Daniel Cajueiro & Benjamin Tabak, 2006. "The long-range dependence phenomena in asset returns: the Chinese case," Applied Economics Letters, Taylor & Francis Journals, vol. 13(2), pages 131-133.
  10. Todd E. Clark & Michael W. McCracken, 2008. "Improving forecast accuracy by combining recursive and rolling forecasts," Working Papers 2008-028, Federal Reserve Bank of St. Louis.
  11. John Barkoulas & Christopher Baum & Nickolaos Travlos, 2000. "Long memory in the Greek stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 10(2), pages 177-184.
  12. Lobato, I.N. & Savin, N.E., 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Working Papers 96-07, University of Iowa, Department of Economics.
  13. Limam Imed, 2003. "Is Long Memory a Property of Thin Stock Markets? International Evidence Using Arab Countries," Review of Middle East Economics and Finance, De Gruyter, vol. 1(3), pages 56-71, December.
  14. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  15. Cheung, Yin-Wong & Lai, Kon S., 1995. "A search for long memory in international stock market returns," Journal of International Money and Finance, Elsevier, vol. 14(4), pages 597-615, August.
  16. Podobnik, Boris & Fu, Dongfeng & Jagric, Timotej & Grosse, Ivo & Eugene Stanley, H., 2006. "Fractionally integrated process for transition economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 465-470.
  17. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
  18. Mark J. Jensen, 1997. "An Alternative Maximum Likelihood Estimator of Long-Memeory Processes Using Compactly Supported Wavelets," Econometrics 9709002, EconWPA.
  19. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
  20. Ammer, John & Campbell, John, 1993. "What Moves the Stock and Bond Markets? A Variance Decomposition for Long-Term Asset Returns," Scholarly Articles 3382857, Harvard University Department of Economics.
  21. Heij, Christiaan & de Boer, Paul & Franses, Philip Hans & Kloek, Teun & van Dijk, Herman K., 2004. "Econometric Methods with Applications in Business and Economics," OUP Catalogue, Oxford University Press, number 9780199268016, March.
  22. Cajueiro, Daniel O. & Tabak, Benjamin M., 2005. "Possible causes of long-range dependence in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(3), pages 635-645.
  23. Sadique, Shibley & Silvapulle, Param, 2001. "Long-Term Memory in Stock Market Returns: International Evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(1), pages 59-67, January.
  24. Geert Bekaert & Campbell R. Harvey, 1994. "Time-Varying World Market Integration," NBER Working Papers 4843, National Bureau of Economic Research, Inc.
  25. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Contemporaneous aggregation and long-memory property of returns and volatility in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4844-4854.
  26. Fink, Jason & Fink, Kristin E. & Grullon, Gustavo & Weston, James P., 2010. "What Drove the Increase in Idiosyncratic Volatility during the Internet Boom?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(05), pages 1253-1278, October.
  27. Chow, K Victor & Pan, Ming-Shium & Sakano, Ryoichi, 1996. " On the Long-Term or Short-Term Dependence in Stock Prices: Evidence from International Stock Markets," Review of Quantitative Finance and Accounting, Springer, vol. 6(2), pages 181-94, March.
  28. Eom, Cheoljun & Choi, Sunghoon & Oh, Gabjin & Jung, Woo-Sung, 2008. "Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4630-4636.
  29. Sánchez Granero, M.A. & Trinidad Segovia, J.E. & García Pérez, J., 2008. "Some comments on Hurst exponent and the long memory processes on capital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5543-5551.
  30. Dimson, Elroy & Mussavian, Massoud, 1999. "Three centuries of asset pricing," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1745-1769, December.
  31. Lo, Andrew W. (Andrew Wen-Chuan), 1989. "Long-term memory in stock market prices," Working papers 3014-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  32. Olivier Ledoit & Michael Wolf, 2001. "Improved estimation of the covariance matrix of stock returns with an application to portofolio selection," Economics Working Papers 586, Department of Economics and Business, Universitat Pompeu Fabra.
  33. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-28, September.
  34. Lee, Bong-Soo, 1992. " Causal Relations among Stock Returns, Interest Rates, Real Activity, and Inflation," Journal of Finance, American Finance Association, vol. 47(4), pages 1591-603, September.
  35. Thomas Lux, 1996. "Long-term stochastic dependence in financial prices: evidence from the German stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 3(11), pages 701-706.
  36. Cannon, Michael J. & Percival, Donald B. & Caccia, David C. & Raymond, Gary M. & Bassingthwaighte, James B., 1997. "Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 241(3), pages 606-626.
  37. Lennart Berg & Johan Lyhagen, 1998. "Short and long-run dependence in Swedish stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 435-443.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:7:p:2330-2341. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.