IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i22p5543-5551.html
   My bibliography  Save this article

Some comments on Hurst exponent and the long memory processes on capital markets

Author

Listed:
  • Sánchez Granero, M.A.
  • Trinidad Segovia, J.E.
  • García Pérez, J.

Abstract

The analysis of long memory processes in capital markets has been one of the topics in finance, since the existence of the market memory could implicate the rejection of an efficient market hypothesis. The study of these processes in finance is realized through Hurst exponent and the most classical method applied is R/S analysis. In this paper we will discuss the efficiency of this methodology as well as some of its more important modifications to detect the long memory. We also propose the application of a classical geometrical method with short modifications and we compare both approaches.

Suggested Citation

  • Sánchez Granero, M.A. & Trinidad Segovia, J.E. & García Pérez, J., 2008. "Some comments on Hurst exponent and the long memory processes on capital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5543-5551.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:22:p:5543-5551
    DOI: 10.1016/j.physa.2008.05.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108004895
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    2. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    3. Denis Conniffe & John E. Spencer, 2000. "Approximating the Distribution of the R/s Statistic," The Economic and Social Review, Economic and Social Studies, vol. 31(3), pages 237-248.
    4. repec:mes:challe:v:35:y:1992:i:1:p:57-59 is not listed on IDEAS
    5. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    6. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    7. Greene, Myron T. & Fielitz, Bruce D., 1977. "Long-term dependence in common stock returns," Journal of Financial Economics, Elsevier, vol. 4(3), pages 339-349, May.
    8. Epaminondas Panas, 2001. "Estimating fractal dimension using stable distributions and exploring long memory through ARFIMA models in Athens Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 11(4), pages 395-402.
    9. Couillard, Michel & Davison, Matt, 2005. "A comment on measuring the Hurst exponent of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 404-418.
    10. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    11. David K. Backus & Stanley E. Zin, 1993. "Long-memory inflation uncertainty: evidence from the term structure of interest rates," Proceedings, Federal Reserve Bank of Cleveland, pages 681-708.
    12. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    13. B. Mandelbrot, 1972. "Statistical Methodology for Nonperiodic Cycles: From the Covariance To R/S Analysis," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 1, number 3, pages 259-290 National Bureau of Economic Research, Inc.
    14. Rafal Weron, 2001. "Measuring long-range dependence in electricity prices," Papers cond-mat/0103621, arXiv.org.
    15. Shea, Gary S, 1991. "Uncertainty and Implied Variance Bounds in Long-Memory Models of the Interest Rate Term Structure," Empirical Economics, Springer, vol. 16(3), pages 287-312.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Hurst exponent; Financial market; Long memory;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:22:p:5543-5551. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.