IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxiiiy2010i2p192-210.html
   My bibliography  Save this article

The Distribution of London Metal Exchange Prices: A Test of the Fractal Market Hypothesis

Author

Listed:
  • Epaminondas Panas
  • Vassilia Ninni

Abstract

The purpose of the present work is to study the fractal properties of the London Metal Exchange (LME) returns time series. Special emphasis is given to the fundamental issue of detection, identification, and measurement of scaling behaviour of LME returns time series. A fractal approach through ARFIMA models is used to analyze the LME time series. The stable distribution has also been used in order to test the Fractal Market Hypothesis (FMH) in the case of LME market. It is demonstrated that LME returns data possess to some extent fractal properties. The findings are in line with the FMH.

Suggested Citation

  • Epaminondas Panas & Vassilia Ninni, 2010. "The Distribution of London Metal Exchange Prices: A Test of the Fractal Market Hypothesis," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 192-210.
  • Handle: RePEc:ers:journl:v:xiii:y:2010:i:2:p:192-210
    as

    Download full text from publisher

    File URL: http://www.ersj.eu/repec/ers/papers/10_2_p16.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Diebold, Francis X & Husted, Steven & Rush, Mark, 1991. "Real Exchange Rates under the Gold Standard," Journal of Political Economy, University of Chicago Press, vol. 99(6), pages 1252-1271, December.
    2. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    3. Hall, Joyce A. & Brorsen, B. Wade & Irwin, Scott H., 1989. "The Distribution of Futures Prices: A Test of the Stable Paretian and Mixture of Normals Hypotheses," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(01), pages 105-116, March.
    4. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    5. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    6. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    7. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    8. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    9. Epaminondas Panas, 2001. "Estimating fractal dimension using stable distributions and exploring long memory through ARFIMA models in Athens Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 11(4), pages 395-402.
    10. Stella Kanellopoulou & Epaminondas Panas, 2008. "Empirical distributions of stock returns: Paris stock market, 1980-2003," Applied Financial Economics, Taylor & Francis Journals, vol. 18(16), pages 1289-1302.
    11. McCulloch, J Huston, 1997. "Measuring Tail Thickness to Estimate the Stable Index Alpha: A Critique," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 74-81, January.
    12. David K. Backus & Stanley E. Zin, 1993. "Long-memory inflation uncertainty: evidence from the term structure of interest rates," Proceedings, Federal Reserve Bank of Cleveland, pages 681-708.
    13. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    14. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
    15. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    16. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    17. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
    18. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    19. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    20. Geoffrey Poitras, 1990. "The distribution of gold futures spreads," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 10(6), pages 643-659, December.
    21. Shea, Gary S, 1991. "Uncertainty and Implied Variance Bounds in Long-Memory Models of the Interest Rate Term Structure," Empirical Economics, Springer, vol. 16(3), pages 287-312.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gil-Alana, Luis A. & Tripathy, Trilochan, 2014. "Modelling volatility persistence and asymmetry: A Study on selected Indian non-ferrous metals markets," Resources Policy, Elsevier, vol. 41(C), pages 31-39.
    2. Adibi, Nabiollah & Ataee-pour, Majid, 2015. "Decreasing minerals׳ revenue risk by diversification of mineral production in mineral rich countries," Resources Policy, Elsevier, vol. 45(C), pages 121-129.
    3. repec:eee:intfor:v:33:y:2017:i:3:p:605-617 is not listed on IDEAS
    4. repec:wsi:ijtafx:v:20:y:2017:i:08:n:s0219024917500546 is not listed on IDEAS
    5. Luis Alberiko Gil-Alaña & Trilochan Tripathy, 2013. "Modelling volatility persistence and asymmetry: a study on selected Indian non-ferrous metals markets," NCID Working Papers 11/2013, Navarra Center for International Development, University of Navarra.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xiii:y:2010:i:2:p:192-210. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marios Agiomavritis). General contact details of provider: http://www.ersj.eu/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.