IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v348y2005icp404-418.html
   My bibliography  Save this article

A comment on measuring the Hurst exponent of financial time series

Author

Listed:
  • Couillard, Michel
  • Davison, Matt

Abstract

A fundamental hypothesis of quantitative finance is that stock price variations are independent and can be modeled using Brownian motion. In recent years, it was proposed to use rescaled range analysis and its characteristic value, the Hurst exponent, to test for independence in financial time series. Theoretically, independent time series should be characterized by a Hurst exponent of 1/2. However, finite Brownian motion data sets will always give a value of the Hurst exponent larger than 1/2 and without an appropriate statistical test such a value can mistakenly be interpreted as evidence of long term memory. We obtain a more precise statistical significance test for the Hurst exponent and apply it to real financial data sets. Our empirical analysis shows no long-term memory in some financial returns, suggesting that Brownian motion cannot be rejected as a model for price dynamics.

Suggested Citation

  • Couillard, Michel & Davison, Matt, 2005. "A comment on measuring the Hurst exponent of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 404-418.
  • Handle: RePEc:eee:phsmap:v:348:y:2005:i:c:p:404-418 DOI: 10.1016/j.physa.2004.09.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104012713
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antoniou, Antonios & Vorlow, Constantinos E., 2004. "Recurrence quantification analysis of wavelet pre-filtered index returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 257-262.
    2. Victor Niederhoffer, 1965. "A New Look at Clustering of Stock Prices," The Journal of Business, University of Chicago Press, vol. 39, pages 309-309.
    3. Mandelbrot, Benoit B., 1999. "Renormalization and fixed points in finance, since 1962," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 263(1), pages 477-487.
    4. Fang, Yue, 2002. "The compass rose and random walk tests," Computational Statistics & Data Analysis, Elsevier, vol. 39(3), pages 299-310, May.
    5. Hsieh, David A, 1991. " Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    6. Szpiro, George G., 1998. "Tick size, the compass rose and market nanostructure," Journal of Banking & Finance, Elsevier, vol. 22(12), pages 1559-1569, December.
    7. Mayfield, E Scott & Mizrach, Bruce, 1992. "On Determining the Dimension of Real-Time Stock-Price Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 367-374, July.
    8. Ausloos, M. & Vandewalle, N. & Boveroux, Ph. & Minguet, A. & Ivanova, K., 1999. "Applications of statistical physics to economic and financial topics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 229-240.
    9. Kramer, Walter & Runde, Ralf, 1997. "Chaos and the compass rose," Economics Letters, Elsevier, vol. 54(2), pages 113-118, February.
    10. Gleason, Kimberly C. & Lee, Chun I. & Mathur, Ike, 2000. "An explanation for the compass rose pattern," Economics Letters, Elsevier, vol. 68(2), pages 127-133, August.
    11. Cho, David Chinhyung & Frees, Edward W, 1988. " Estimating the Volatility of Discrete Stock Prices," Journal of Finance, American Finance Association, vol. 43(2), pages 451-466, June.
    12. Chun I. Lee & Kimberly C. Gleason & Ike Mathur, 1999. "A comprehensive examination of the compass rose pattern in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(5), pages 541-564, August.
    13. Ramsey, James B & Sayers, Chera L & Rothman, Philip, 1990. "The Statistical Properties of Dimension Calculations Using Small Data Sets: Some Economic Applications," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 31(4), pages 991-1020, November.
    14. Wang, Eliza & Hudson, Robert & Keasey, Kevin, 2000. "Tick size and the compass rose: further insights," Economics Letters, Elsevier, vol. 68(2), pages 119-125, August.
    15. Brock, W.A., 1991. "Some Theory of Statistical Inference for Nonlinear Science : Expanded Version," Working papers 9101, Wisconsin Madison - Social Systems.
    16. Clifford A. Ball & Walter N. Torous & Adrian E. Tschoegl, 1985. "The degree of price resolution: The case of the gold market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 5(1), pages 29-43, March.
    17. William A. Brock & Ehung G. Baek, 1991. "Some Theory of Statistical Inference for Nonlinear Science," Review of Economic Studies, Oxford University Press, vol. 58(4), pages 697-716.
    18. Ramsey, J.B., 2002. "Wavelets in Economics and Finance: Past and Future," Working Papers 02-02, C.V. Starr Center for Applied Economics, New York University.
    19. Catherine Kyrtsou & Michel Terraza, 2003. "Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 257-276, June.
    20. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.
    21. Kyrtsou, Catherine & Terraza, Michel, 2002. "Stochastic chaos or ARCH effects in stock series?: A comparative study," International Review of Financial Analysis, Elsevier, vol. 11(4), pages 407-431.
    22. James Theiler & Stephen Eubank, 1993. "Don't Bleach Chaotic Data," Working Papers 93-05-026, Santa Fe Institute.
    23. An-Sing Chen, 1997. "The square compass rose: the evidence from Taiwan," Journal of Multinational Financial Management, Elsevier, vol. 7(2), pages 127-144, June.
    24. LeBaron Blake, 1997. "A Fast Algorithm for the BDS Statistic," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(2), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:348:y:2005:i:c:p:404-418. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.