IDEAS home Printed from https://ideas.repec.org/a/eee/ememar/v10y2009i2p122-139.html
   My bibliography  Save this article

Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets

Author

Listed:
  • Kasman, Adnan
  • Kasman, Saadet
  • Torun, Erdost

Abstract

This paper investigates the presence of long memory in the eight Central and Eastern European (CEE) countries' stock market, using the ARFIMA, GPH, FIGARCH and HYGARCH models. The data set consists of daily returns, and long memory tests are carried out both for the returns and volatilities of these series. The results of the ARFIMA and GPH models indicate the existence of long memory in five of eight return series. The results also suggest that long memory dynamics in the returns and volatility might be modeled by using the ARFIMA-FIGARCH and ARFIMA-HYGARCH models. The results of these models indicate strong evidence of long memory both in conditional mean and conditional variance. Moreover, the ARFIMA-FIGARCH model provides the better out-of-sample forecast for the sampled stock markets.

Suggested Citation

  • Kasman, Adnan & Kasman, Saadet & Torun, Erdost, 2009. "Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets," Emerging Markets Review, Elsevier, vol. 10(2), pages 122-139, June.
  • Handle: RePEc:eee:ememar:v:10:y:2009:i:2:p:122-139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1566-0141(09)00009-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Assaf, A., 2006. "Dependence and mean reversion in stock prices: The case of the MENA region," Research in International Business and Finance, Elsevier, vol. 20(3), pages 286-304, September.
    3. Dimitrios Vougas, 2004. "Analysing long memory and volatility of returns in the Athens stock exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 14(6), pages 457-460.
    4. Sadique, Shibley & Silvapulle, Param, 2001. "Long-Term Memory in Stock Market Returns: International Evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(1), pages 59-67, January.
    5. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    6. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    7. Martin Martens & Jason Zein, 2004. "Predicting financial volatility: High‐frequency time‐series forecasts vis‐à‐vis implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1005-1028, November.
    8. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
    9. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    10. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    11. Jussi Tolvi, 2003. "Long memory and outliers in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 13(7), pages 495-502.
    12. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    15. L.A. Gil‐Alana, 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, John Wiley & Sons, vol. 15(1), pages 28-48.
    16. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
    17. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    18. John Barkoulas & Christopher Baum & Nickolaos Travlos, 2000. "Long memory in the Greek stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 10(2), pages 177-184.
    19. Cheung, Yin-Wong & Lai, Kon S., 1995. "A search for long memory in international stock market returns," Journal of International Money and Finance, Elsevier, vol. 14(4), pages 597-615, August.
    20. Limam Imed, 2003. "Is Long Memory a Property of Thin Stock Markets? International Evidence Using Arab Countries," Review of Middle East Economics and Finance, De Gruyter, vol. 1(3), pages 56-71, December.
    21. Cheung, Yin-Wong & Lai, Kon S, 1993. "A Fractional Cointegration Analysis of Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 103-112, January.
    22. Martin Martens & Dick van Dijk & Michiel de Pooter, 2004. "Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity," Tinbergen Institute Discussion Papers 04-067/4, Tinbergen Institute.
    23. Jacobsen, Ben, 1996. "Long term dependence in stock returns," Journal of Empirical Finance, Elsevier, vol. 3(4), pages 393-417, December.
    24. Olan Henry, 2002. "Long memory in stock returns: some international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 725-729.
    25. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    26. Christos Floros & Shabbar Jaffry & Goncalo Valle Lima, 2007. "Long memory in the Portuguese stock market," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 24(3), pages 220-232, August.
    27. Kang, Sang Hoon & Yoon, Seong-Min, 2007. "Long memory properties in return and volatility: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 591-600.
    28. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adnan Kasman & Erdost Torun, 2007. "Long Memory in the Turkish Stock Market Return and Volatility," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 7(2), pages 13-27.
    2. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    3. Saadet Kasman & Evrim Turgutlu & A. Duygu Ayhan, 2009. "Long memory in stock returns: evidence from the major emerging Central European stock markets," Applied Economics Letters, Taylor & Francis Journals, vol. 16(17), pages 1763-1768.
    4. Luis Gil-Alana, 2010. "Testing persistence in the context of conditional heteroscedasticity errors," Applied Financial Economics, Taylor & Francis Journals, vol. 20(22), pages 1709-1723.
    5. David G. McMillan & Pako Thupayagale, 2009. "The efficiency of African equity markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 26(4), pages 275-292, October.
    6. Tripathy, Naliniprava, 2022. "Long memory and volatility persistence across BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 63(C).
    7. Tomasz Wójtowicz & Henryk Gurgul, 2009. "Long memory of volatility measures in time series," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 37-54.
    8. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    9. Guglielmo Maria Caporale & Luis Gil-Alana, 2011. "The weekly structure of US stock prices," Applied Financial Economics, Taylor & Francis Journals, vol. 21(23), pages 1757-1764.
    10. Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
    11. Guglielmo Maria Caporale & Luis A. Gil‐Alana & James C. Orlando, 2016. "Linkages Between the US and European Stock Markets: A Fractional Cointegration Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 143-153, April.
    12. González-Pla, Francisco & Lovreta, Lidija, 2019. "Persistence in firm’s asset and equity volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    13. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
    14. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    15. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    16. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    17. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    18. Mr. Jun Nagayasu, 2003. "The Efficiency of the Japanese Equity Market," IMF Working Papers 2003/142, International Monetary Fund.
    19. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    20. Luis A. Gil-Alana & Yun Cao, 2011. "Stock market prices in China. Efficiency, mean reversion, long memory volatility and other implicit dynamics," Faculty Working Papers 12/11, School of Economics and Business Administration, University of Navarra.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ememar:v:10:y:2009:i:2:p:122-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620356 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.