A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-022-10320-z
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working papers 2020-10, University of Connecticut, Department of Economics.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working Papers 202056, University of Pretoria, Department of Economics.
References listed on IDEAS
- Conrad, Christian, 2010.
"Non-negativity conditions for the hyperbolic GARCH model,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 441-457, August.
- Christian Conrad, 2007. "Non-negativity Conditions for the Hyperbolic GARCH Model," KOF Working papers 07-162, KOF Swiss Economic Institute, ETH Zurich.
- Christos Floros & Shabbar Jaffry & Goncalo Valle Lima, 2007. "Long memory in the Portuguese stock market," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 24(3), pages 220-232, August.
- Terui, Nobuhiko & van Dijk, Herman K., 2002.
"Combined forecasts from linear and nonlinear time series models,"
International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
- Terui, N. & van Dijk, H.K., 1999. "Combined forecasts from linear and nonlinear time series models," Econometric Institute Research Papers EI 9949-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- N. Terui & Herman K. van Dijk, 2000. "Combined Forecasts from Linear and Nonlinear Time Series Models," Tinbergen Institute Discussion Papers 00-003/4, Tinbergen Institute.
- L.A. Gil‐Alana, 2006.
"Fractional integration in daily stock market indexes,"
Review of Financial Economics, John Wiley & Sons, vol. 15(1), pages 28-48.
- Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
- Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
- Henryk GURGUL & Tomasz WÓJTOWICZ, 2006. "Long Memory on the German Stock Exchange," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 56(09-10), pages 447-468, September.
- Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 31-67.
- Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
- Keith Jefferis & Pako Thupayagale, 2008. "Long Memory In Southern African Stock Markets," South African Journal of Economics, Economic Society of South Africa, vol. 76(3), pages 384-398, September.
- Barkoulas, John T. & Baum, Christopher F., 1996.
"Long-term dependence in stock returns,"
Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
- Christopher F. Baum & John Barkoulas, 1996. "Long Term Dependence in Stock Returns," Boston College Working Papers in Economics 314., Boston College Department of Economics.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
- Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
- DiSario, Robert & Saraoglu, Hakan & McCarthy, Joseph & Li, Hsi, 2008. "Long memory in the volatility of an emerging equity market: The case of Turkey," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(4), pages 305-312, October.
- C. W. J. Granger & Zhuanxin Ding, 1995. "Some Properties of Absolute Return: An Alternative Measure of Risk," Annals of Economics and Statistics, GENES, issue 40, pages 67-91.
- Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996.
"Fractionally integrated generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
- Tom Doan, "undated". "RATS programs to replicate Baillie, Bollerslev, Mikkelson FIGARCH results," Statistical Software Components RTZ00009, Boston College Department of Economics.
- repec:pri:cepsud:91malkiel is not listed on IDEAS
- Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2014.
"Predicting BRICS stock returns using ARFIMA models,"
Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1159-1166, September.
- Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2012. "Predicting BRICS Stock Returns Using ARFIMA Models," Working Papers 201235, University of Pretoria, Department of Economics.
- Serpil TURKYILMAZ & Mesut BALIBEY, 2014. "Long Memory Behavior in the Returns of Pakistan Stock Market: ARFIMA-FIGARCH Models," International Journal of Economics and Financial Issues, Econjournals, vol. 4(2), pages 400-410.
- Lin, Xiaoqiang & Fei, Fangyu, 2013. "Long memory revisit in Chinese stock markets: Based on GARCH-class models and multiscale analysis," Economic Modelling, Elsevier, vol. 31(C), pages 265-275.
- Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
- John T. Barkoulas & Christopher F. Baum & Nickolaos Travlos, 1996. "Long Memory in the Greek Stock Market," Boston College Working Papers in Economics 356., Boston College Department of Economics.
- Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
- Schoffer, Olaf, 2003. "HY-A-PARCH: A stationary A-PARCH model with long memory," Technical Reports 2003,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Olan Henry, 2002. "Long memory in stock returns: some international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 725-729.
- Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
- Kang, Sang Hoon & Yoon, Seong-Min, 2007. "Long memory properties in return and volatility: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 591-600.
- Reboredo, Juan C. & Rivera-Castro, Miguel A., 2014. "Wavelet-based evidence of the impact of oil prices on stock returns," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 145-176.
- John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
- Donald W. K. Andrews & Patrik Guggenberger, 2003.
"A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter,"
Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
- Donald W.K. Andrews & Patrik Guggenberger, 2000. "A Bias-Reduced Log-Periodogram Regression Estimator for the Long-Memory Parameter," Cowles Foundation Discussion Papers 1263, Cowles Foundation for Research in Economics, Yale University.
- Tom Doan, "undated". "AGFRACTD: RATS procedure to compute Andrews-Guggenberger estimate of fractional difference," Statistical Software Components RTS00005, Boston College Department of Economics.
- Siow-Hooi Tan & Mohammad Tariqul Islam Khan, 2010. "Long Memory Features in Return and Volatility of the Malaysian Stock Market," Economics Bulletin, AccessEcon, vol. 30(4), pages 3267-3281.
- Adnan Kasman & Erdost Torun, 2007. "Long Memory in the Turkish Stock Market Return and Volatility," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 7(2), pages 13-27.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
- Bollerslev, Tim & Ole Mikkelsen, Hans, 1996.
"Modeling and pricing long memory in stock market volatility,"
Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
- Tom Doan, "undated". "RATS program to replicate Bollerslev-Mikkelson(1996) FIEGARCH models," Statistical Software Components RTZ00173, Boston College Department of Economics.
- Hedayati , Amin & Hedayati , Moein & Esfandyari, Morteza, 2016. "Stock market index prediction using artificial neural network," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 21(41), pages 89-93.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
- repec:dau:papers:123456789/9331 is not listed on IDEAS
- James H. Stock & Mark W.Watson, 2003.
"Forecasting Output and Inflation: The Role of Asset Prices,"
Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
- James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
- James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
- Korkmaz, Turhan & Cevik, Emrah Ismail & Özataç, Nesrin, 2009. "Testing for long memory in ISE using Arfima-Figarch model and structural break test," MPRA Paper 71302, University Library of Munich, Germany.
- Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
- Christos Floros & Shabbar Jaffry & Goncalo Valle Lima, 2007. "Long memory in the Portuguese stock market," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 24(3), pages 220-232, August.
- Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
- Sadique, Shibley & Silvapulle, Param, 2001. "Long-Term Memory in Stock Market Returns: International Evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(1), pages 59-67, January.
- Bhardwaj, Geetesh & Swanson, Norman R., 2006.
"An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
- Geetesh Bhardwaj & Norman Swanson, 2004. "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Departmental Working Papers 200422, Rutgers University, Department of Economics.
- Kasman, Adnan & Kasman, Saadet & Torun, Erdost, 2009. "Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets," Emerging Markets Review, Elsevier, vol. 10(2), pages 122-139, June.
- Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
- Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
- Régis Bourbonnais & Magda Mara Maftei, 2012. "ARFIMA Process : Tests and Applications at a White Noise Process, A Random Walk Process and the Stock Exchange Index CAC 40," Post-Print hal-01491880, HAL.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
- Y. K. Tse, 1998. "The conditional heteroscedasticity of the yen-dollar exchange rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 49-55.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tripathy, Naliniprava, 2022. "Long memory and volatility persistence across BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 63(C).
- Kasman, Adnan & Kasman, Saadet & Torun, Erdost, 2009. "Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets," Emerging Markets Review, Elsevier, vol. 10(2), pages 122-139, June.
- Heni Boubaker & Bassem Saidane & Mouna Ben Saad Zorgati, 2022. "Modelling the dynamics of stock market in the gulf cooperation council countries: evidence on persistence to shocks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-22, December.
- Hiremath, Gourishankar S & Bandi, Kamaiah, 2010. "Long Memory in Stock Market Volatility:Evidence from India," MPRA Paper 48519, University Library of Munich, Germany.
- repec:awi:wpaper:0472 is not listed on IDEAS
- González-Pla, Francisco & Lovreta, Lidija, 2019. "Persistence in firm’s asset and equity volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Adnan Kasman & Erdost Torun, 2007. "Long Memory in the Turkish Stock Market Return and Volatility," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 7(2), pages 13-27.
- Tomasz Wójtowicz & Henryk Gurgul, 2009. "Long memory of volatility measures in time series," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 37-54.
- Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- Conrad, Christian, 2010.
"Non-negativity conditions for the hyperbolic GARCH model,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 441-457, August.
- Christian Conrad, 2007. "Non-negativity Conditions for the Hyperbolic GARCH Model," KOF Working papers 07-162, KOF Swiss Economic Institute, ETH Zurich.
- Al-Shboul, Mohammad & Alsharari, Nizar, 2019. "The dynamic behavior of evolving efficiency: Evidence from the UAE stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 119-135.
- Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2013.
"SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence,"
Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 249-265, February.
- Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2012. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," AMSE Working Papers 1214, Aix-Marseille School of Economics, France.
- Mohamed Chikhi & Anne Peguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Post-Print hal-01499630, HAL.
- Mohamed Chikhi & Anne Peguin-Feissolle & Michel Terraza, 2012. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Working Papers halshs-00793203, HAL.
- CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012.
"Modelling Long Memory Volatility In Agricultural Commodity Futures Returns,"
Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
- Tansuchat, R. & Chang, C-L. & McAleer, M.J., 2009. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Econometric Institute Research Papers EI 2009-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Roengchai Tansuchat & Chia-Lin Chang & Michael McAleer, 2009. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," CIRJE F-Series CIRJE-F-680, CIRJE, Faculty of Economics, University of Tokyo.
- Michael McAleer & Chia-Lin Chang & Roengchai Tansuchat, 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Return," KIER Working Papers 817, Kyoto University, Institute of Economic Research.
- Roengchai Tansuchat & Chia-Lin Chang & Michael McAleer, 2009. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," CARF F-Series CARF-F-183, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Chang, C-L. & McAleer, M.J. & Tansuchat, R., 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Econometric Institute Research Papers EI 2012-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Working Papers in Economics 12/09, University of Canterbury, Department of Economics and Finance.
- Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Documentos de Trabajo del ICAE 2012-10, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised May 2012.
- Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018.
"Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Post-Print hal-01982032, HAL.
- Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
- Chaker Aloui & Duc Khuong Nguyen, 2014.
"On the detection of extreme movements and persistent behaviour in Mediterranean stock markets: a wavelet-based approach,"
Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2611-2622, August.
- Chaker Aloui & Duc Khuong Nguyen, 2014. "On the detection of extreme movements and persistent behavior in Mediterranean stock markets: a wavelet-based approach," Working Papers 2014-184, Department of Research, Ipag Business School.
- Härdle, Wolfgang Karl & Mungo, Julius, 2007. "Long memory persistence in the factor of Implied volatility dynamics," SFB 649 Discussion Papers 2007-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Trino-Manuel Ñíguez, 2003. "Volatility And Var Forecasting For The Ibex-35 Stock-Return Index Using Figarch-Type Processes And Different Evaluation Criteria," Working Papers. Serie AD 2003-33, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
More about this item
Keywords
Wavelet decomposition; WLLWNN; Neural network; ARFIMA; HYGARCH;All these keywords.
JEL classification:
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10320-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.