IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v13y2006i2p131-133.html
   My bibliography  Save this article

The long-range dependence phenomena in asset returns: the Chinese case

Author

Listed:
  • Daniel Cajueiro
  • Benjamin Tabak

Abstract

This paper studies the segmented structure of the Chinese stock market, which is a unique opportunity to investigate the possible sources of the long-range dependence phenomena in asset returns. Using the Hurst's exponent evaluated by the Local Whittle method as the measure of long-range dependence, evidence is found supporting that while type B shares present strong evidence of the long-range dependence phenomena, type A shares present only weak evidence of such dependence. This result suggests that liquidity and information transmission play a role in explaining results of market efficiency tests.

Suggested Citation

  • Daniel Cajueiro & Benjamin Tabak, 2006. "The long-range dependence phenomena in asset returns: the Chinese case," Applied Economics Letters, Taylor & Francis Journals, vol. 13(2), pages 131-133.
  • Handle: RePEc:taf:apeclt:v:13:y:2006:i:2:p:131-133
    DOI: 10.1080/13504850500392214
    as

    Download full text from publisher

    File URL: http://www.informaworld.com/openurl?genre=article&doi=10.1080/13504850500392214&magic=repec&7C&7C8674ECAB8BB840C6AD35DC6213A474B5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504850500392214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    2. Benjamin Miranda Tabak, 2002. "The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case," Working Papers Series 58, Central Bank of Brazil, Research Department.
    3. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    4. Sun, Qian & Tong, Wilson H. S., 2000. "The effect of market segmentation on stock prices: The China syndrome," Journal of Banking & Finance, Elsevier, vol. 24(12), pages 1875-1902, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    2. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
    3. Fifield, Suzanne G.M. & Jetty, Juliana, 2008. "Further evidence on the efficiency of the Chinese stock markets: A note," Research in International Business and Finance, Elsevier, vol. 22(3), pages 351-361, September.
    4. Korkmaz, Turhan & Cevik, Emrah Ismail & Özataç, Nesrin, 2009. "Testing for long memory in ISE using Arfima-Figarch model and structural break test," MPRA Paper 71302, University Library of Munich, Germany.
    5. Chong, Terence Tai-Leung & Lam, Tau-Hing & Yan, Isabel Kit-Ming, 2012. "Is the Chinese stock market really inefficient?," China Economic Review, Elsevier, vol. 23(1), pages 122-137.
    6. Cevik, Emrah Ismail, 2012. "İstanbul Menkul Kıymetler Borsası’nda etkin piyasa hipotezinin uzun hafıza modelleri ile analizi: sektörel bazda bir inceleme [The testing of efficient market hypothesis in the Istanbul Stock Excha," MPRA Paper 71484, University Library of Munich, Germany, revised 2012.
    7. Bariviera, Aurelio Fernández, 2011. "The influence of liquidity on informational efficiency: The case of the Thai Stock Market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4426-4432.
    8. Ezzat, Hassan, 2013. "Long Memory Processes and Structural Breaks in Stock Returns and Volatility: Evidence from the Egyptian Exchange," MPRA Paper 51465, University Library of Munich, Germany.
    9. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
    10. Hung, Jui-Cheng, 2009. "Deregulation and liberalization of the Chinese stock market and the improvement of market efficiency," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 843-857, August.
    11. Zuochao Zhang & Yongjie Zhang & Dehua Shen & Wei Zhang, 2018. "The Dynamic Cross-Correlations between Mass Media News, New Media News, and Stock Returns," Complexity, Hindawi, vol. 2018, pages 1-11, February.
    12. Sensoy, A., 2013. "Time-varying long range dependence in market returns of FEAS members," Chaos, Solitons & Fractals, Elsevier, vol. 53(C), pages 39-45.
    13. Aurelio F. Bariviera & M. Belen Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "A permutation Information Theory tour through different interest rate maturities: the Libor case," Papers 1509.00217, arXiv.org.
    14. Anagnostidis, Panagiotis & Emmanouilides, Christos J., 2015. "Nonlinearity in high-frequency stock returns: Evidence from the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 473-487.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
    2. Maciel, Leandro, 2021. "A new approach to portfolio management in the Brazilian equity market: Does assets efficiency level improve performance?," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 38-56.
    3. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Mensi, Walid & Kumar, Ronald Ravinesh, 2017. "Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 351-363.
    4. Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
    5. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    6. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    7. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    8. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    9. Rim Ammar Lamouchi, 2020. "Long Memory and Stock Market Efficiency: Case of Saudi Arabia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(3), pages 29-34.
    10. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    11. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    12. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    13. Tsionas, Mike G., 2021. "Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    14. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    15. Todea, Alexandru & Pleşoianu, Anita, 2013. "The influence of foreign portfolio investment on informational efficiency: Empirical evidence from Central and Eastern European stock markets," Economic Modelling, Elsevier, vol. 33(C), pages 34-41.
    16. A. Sensoy & Benjamin M. Tabak, 2013. "How much random does European Union walk? A time-varying long memory analysis," Working Papers Series 342, Central Bank of Brazil, Research Department.
    17. Wang, Yuanyuan & Shang, Pengjian, 2018. "A new measurement of financial time irreversibility based on information measures method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 221-230.
    18. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    19. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
    20. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:13:y:2006:i:2:p:131-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.