IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v42y2014icp50-57.html
   My bibliography  Save this article

Commodity futures and market efficiency

Author

Listed:
  • Kristoufek, Ladislav
  • Vosvrda, Miloslav

Abstract

We analyze the market efficiency of 25 commodity futures across various groups—metals, energies, soft commodities, grains and other agricultural commodities. To do so, we utilize the recently proposed Efficiency Index to find out that the most efficient among all of the analyzed commodities is heating oil, closely followed by WTI crude oil, cotton, wheat, and coffee. On the other end of the ranking scale we find live cattle and feeder cattle. The efficiency is also found to be characteristic for specific groups of commodities, with energy commodities being the most efficient and other agricultural commodities (composed mainly of livestock) the least efficient groups. We also discuss contributions of long-term memory, fractal dimension and approximate entropy to the total inefficiency. Last but not least, we come across the nonstandard relationship between the fractal dimension and the Hurst exponent. For the analyzed dataset, the relationship between these two variables is positive, meaning that local persistence (trending) is connected to global anti-persistence. We attribute this behavior to specifics of commodity futures: they may be predictable over a short term and locally, but over a long term they return to their fundamental prices.

Suggested Citation

  • Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
  • Handle: RePEc:eee:eneeco:v:42:y:2014:i:c:p:50-57
    DOI: 10.1016/j.eneco.2013.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988313002776
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Panas, Epaminondas, 1991. "A weak form evaluation of the efficiency of the Rotterdam and Italian oil spot markets," Energy Economics, Elsevier, vol. 13(1), pages 26-32, January.
    2. Roll, Richard, 1972. "Interest Rates on Monetary Assets and Commodity Price Index Changes," Journal of Finance, American Finance Association, vol. 27(2), pages 251-277, May.
    3. Narayan, Paresh Kumar & Narayan, Seema & Zheng, Xinwei, 2010. "Gold and oil futures markets: Are markets efficient?," Applied Energy, Elsevier, vol. 87(10), pages 3299-3303, October.
    4. Charles, Amélie & Darné, Olivier, 2009. "The efficiency of the crude oil markets: Evidence from variance ratio tests," Energy Policy, Elsevier, vol. 37(11), pages 4267-4272, November.
    5. Herbert, John H & Kreil, Erik, 1996. "US natural gas markets : How efficient are they?," Energy Policy, Elsevier, vol. 24(1), pages 1-5, January.
    6. repec:pri:cepsud:91malkiel is not listed on IDEAS
    7. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    8. S. Davies & P. Hall, 1999. "Fractal analysis of surface roughness by using spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 3-37.
    9. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    10. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    11. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    12. Alvarez-Ramirez, Jose & Alvarez, Jesus & Solis, Ricardo, 2010. "Crude oil market efficiency and modeling: Insights from the multiscaling autocorrelation pattern," Energy Economics, Elsevier, vol. 32(5), pages 993-1000, September.
    13. Danthine, Jean-Pierre, 1977. "Martingale, market efficiency and commodity prices," European Economic Review, Elsevier, vol. 10(1), pages 1-17.
    14. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    15. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    16. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    17. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2010. "Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach," Energy Economics, Elsevier, vol. 32(5), pages 979-986, September.
    18. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    19. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Investor preferences for oil spot and futures based on mean-variance and stochastic dominance," Econometric Institute Research Papers EI 2010-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Wang, Tao & Yang, Jian, 2010. "Nonlinearity and intraday efficiency tests on energy futures markets," Energy Economics, Elsevier, vol. 32(2), pages 496-503, March.
    21. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    22. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    23. Wang, Yudong & Liu, Li, 2010. "Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis," Energy Economics, Elsevier, vol. 32(5), pages 987-992, September.
    24. Kim, Min Jae & Kim, Sehyun & Jo, Yong Hwan & Kim, Soo Yong, 2011. "Dependence structure of the commodity and stock markets, and relevant multi-spread strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3842-3854.
    25. Cajueiro, Daniel O. & Tabak, Benjamin M., 2004. "Evidence of long range dependence in Asian equity markets: the role of liquidity and market restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 656-664.
    26. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
    27. Tabak, Benjamin M. & Cajueiro, Daniel O., 2007. "Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility," Energy Economics, Elsevier, vol. 29(1), pages 28-36, January.
    28. Lee, Chien-Chiang & Lee, Jun-De, 2009. "Energy prices, multiple structural breaks, and efficient market hypothesis," Applied Energy, Elsevier, vol. 86(4), pages 466-479, April.
    29. Kristoufek, Ladislav, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
    30. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    31. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    32. Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
    33. Gebre-Mariam, Yohannes Kebede, 2011. "Testing for unit roots, causality, cointegration, and efficiency: The case of the northwest US natural gas market," Energy, Elsevier, vol. 36(5), pages 3489-3500.
    34. Kim, Hongseok & Oh, Gabjin & Kim, Seunghwan, 2011. "Multifractal analysis of the Korean agricultural market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4286-4292.
    35. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    36. Fama, Eugene F, 1991. " Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    37. Lim, Kian-Ping, 2007. "Ranking market efficiency for stock markets: A nonlinear perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 445-454.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Commodities; Efficiency; Entropy; Long-term memory; Fractal dimension;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:42:y:2014:i:c:p:50-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.