IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Crude oil market efficiency and modeling: Insights from the multiscaling autocorrelation pattern

  • Alvarez-Ramirez, Jose
  • Alvarez, Jesus
  • Solis, Ricardo
Registered author(s):

    Empirical research on market inefficiencies focuses on the detection of autocorrelations in price time series. In the case of crude oil markets, statistical support is claimed for weak efficiency over a wide range of time-scales. However, the results are still controversial since theoretical arguments point to deviations from efficiency as prices tend to revert towards an equilibrium path. This paper studies the efficiency of crude oil markets by using lagged detrended fluctuation analysis (DFA) to detect delay effects in price autocorrelations quantified in terms of a multiscaling Hurst exponent (i.e., autocorrelations are dependent of the time scale). Results based on spot price data for the period 1986-2009 indicate important deviations from efficiency associated to lagged autocorrelations, so imposing the random walk for crude oil prices has pronounced costs for forecasting. Evidences in favor of price reversion to a continuously evolving mean underscores the importance of adequately incorporating delay effects and multiscaling behavior in the modeling of crude oil price dynamics.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V7G-5017HM9-1/2/b5d34f9245b57f710e315c49202a36eb
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy Economics.

    Volume (Year): 32 (2010)
    Issue (Month): 5 (September)
    Pages: 993-1000

    as
    in new window

    Handle: RePEc:eee:eneeco:v:32:y:2010:i:5:p:993-1000
    Contact details of provider: Web page: http://www.elsevier.com/locate/eneco

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Peel, David & Sarno, Lucio & Taylor, Mark P, 2001. "Nonlinear Mean-Reversion in Real Exchange Rates: Towards a Solution to the Purchasing Power Parity Puzzles," CEPR Discussion Papers 2658, C.E.P.R. Discussion Papers.
    2. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-30.
    3. Lee, Yen-Hsien & Hu, Hsu-Ning & Chiou, Jer-Shiou, 2010. "Jump dynamics with structural breaks for crude oil prices," Energy Economics, Elsevier, vol. 32(2), pages 343-350, March.
    4. Bernard, Jean-Thomas & Khalaf, Lynda & Kichian, Maral & McMahon, Sébastien, 2008. "Oil Prices: Heavy Tails, Mean Reversion and the Convenience Yield," Cahiers de recherche 0801, GREEN.
    5. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    6. Serletis, Apostolos & Andreadis, Ioannis, 2004. "Random fractal structures in North American energy markets," Energy Economics, Elsevier, vol. 26(3), pages 389-399, May.
    7. Lo, Andrew W. (Andrew Wen-Chuan), 1989. "Long-term memory in stock market prices," Working papers 3014-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    8. Charles, Amélie & Darné, Olivier, 2009. "The efficiency of the crude oil markets: Evidence from variance ratio tests," Energy Policy, Elsevier, vol. 37(11), pages 4267-4272, November.
    9. Mohammadi, Hassan, 2009. "Electricity prices and fuel costs: Long-run relations and short-run dynamics," Energy Economics, Elsevier, vol. 31(3), pages 503-509, May.
    10. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    11. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    12. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    13. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    14. Tabak, Benjamin M. & Cajueiro, Daniel O., 2007. "Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility," Energy Economics, Elsevier, vol. 29(1), pages 28-36, January.
    15. Amos Tversky & Daniel Kahneman, 1979. "Prospect Theory: An Analysis of Decision under Risk," Levine's Working Paper Archive 7656, David K. Levine.
    16. Shambora, William E. & Rossiter, Rosemary, 2007. "Are there exploitable inefficiencies in the futures market for oil?," Energy Economics, Elsevier, vol. 29(1), pages 18-27, January.
    17. Wang, Yudong & Liu, Li, 2010. "Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis," Energy Economics, Elsevier, vol. 32(5), pages 987-992, September.
    18. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
    19. Ghaffari, Ali & Zare, Samaneh, 2009. "A novel algorithm for prediction of crude oil price variation based on soft computing," Energy Economics, Elsevier, vol. 31(4), pages 531-536, July.
    20. Tvedt, Jostein, 2002. "The effect of uncertainty and aggregate investments on crude oil price dynamics," Energy Economics, Elsevier, vol. 24(6), pages 615-628, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:32:y:2010:i:5:p:993-1000. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.