IDEAS home Printed from https://ideas.repec.org/a/kap/fmktpm/v29y2015i1p31-59.html
   My bibliography  Save this article

Covariance averaging for improved estimation and portfolio allocation

Author

Abstract

We propose a new method for estimating the covariance matrix of a multivariate time series of financial returns. The method is based on estimating sample covariances from overlapping windows of observations which are then appropriately weighted to obtain the final covariance estimate. We extend the idea of (model) covariance averaging offered in the covariance shrinkage approach by means of greater ease of use, flexibility and robustness in averaging information over different data segments. The suggested approach does not suffer from the curse of dimensionality and can be used without problems of either approximation or any demand for numerical optimization. Copyright Swiss Society for Financial Market Research 2015

Suggested Citation

  • Fotis Papailias & Dimitrios Thomakos, 2015. "Covariance averaging for improved estimation and portfolio allocation," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 29(1), pages 31-59, February.
  • Handle: RePEc:kap:fmktpm:v:29:y:2015:i:1:p:31-59
    DOI: 10.1007/s11408-014-0242-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11408-014-0242-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11408-014-0242-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Annastiina Silvennoinen & Timo Teräsvirta, 2009. "Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(4), pages 373-411, Fall.
    2. Zhenyu Wang, 2005. "A Shrinkage Approach to Model Uncertainty and Asset Allocation," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 673-705.
    3. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
    4. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    5. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    6. Huo, Lijuan & Kim, Tae-Hwan & Kim, Yunmi, 2012. "Robust estimation of covariance and its application to portfolio optimization," Finance Research Letters, Elsevier, vol. 9(3), pages 121-134.
    7. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    8. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    9. Olivier Ledoit & Pedro Santa-Clara & Michael Wolf, 2003. "Flexible Multivariate GARCH Modeling with an Application to International Stock Markets," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 735-747, August.
    10. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    11. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 642-675, October.
    12. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    13. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    14. Sait Tunc & Suleyman S. Kozat, 2012. "Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach," Papers 1203.4156, arXiv.org.
    15. Lionel Martellini & Volker Ziemann, 2010. "Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection," Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1467-1502, April.
    16. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    17. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    18. Sait Tunc & Mehmet A. Donmez & Suleyman S. Kozat, 2012. "Optimal Investment Under Transaction Costs," Papers 1203.4153, arXiv.org, revised Jul 2012.
    19. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    20. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    21. Kwan, Clarence C.Y., 2008. "Estimation error in the average correlation of security returns and shrinkage estimation of covariance and correlation matrices," Finance Research Letters, Elsevier, vol. 5(4), pages 236-244, December.
    22. Bajeux-Besnainou, Isabelle & Bandara, Wachindra & Bura, Efstathia, 2012. "A Krylov subspace approach to large portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1688-1699.
    23. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    24. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    25. Prasad S Bhattacharya & Dimitrios D Thomakos, 2011. "Improving forecasting performance by window and model averaging," CAMA Working Papers 2011-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    26. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    2. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    3. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    4. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    5. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    6. Fletcher, Jonathan, 2011. "Do optimal diversification strategies outperform the 1/N strategy in U.K. stock returns?," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 375-385.
    7. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    8. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    9. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    10. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
    11. Bian, Zhicun & Liao, Yin & O’Neill, Michael & Shi, Jing & Zhang, Xueyong, 2020. "Large-scale minimum variance portfolio allocation using double regularization," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    12. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    13. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    14. Kempf, Alexander & Korn, Olaf & Saßning, Sven, 2014. "Portfolio optimization using forward-looking information," CFR Working Papers 11-10 [rev.], University of Cologne, Centre for Financial Research (CFR).
    15. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    16. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    17. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    18. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    19. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    20. repec:fgv:epgrbe:v:67:n:1:a:3 is not listed on IDEAS
    21. Mishra, Anil V., 2015. "Measures of equity home bias puzzle," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 293-312.

    More about this item

    Keywords

    Averaging; Covariance estimation; Portfolio allocation; Rolling window; C32; C58; G11;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:fmktpm:v:29:y:2015:i:1:p:31-59. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.