IDEAS home Printed from https://ideas.repec.org/r/eee/jomega/v11y1983i1p91-95.html
   My bibliography  Save this item

A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. S-W Choi & Y-D Kim, 2007. "Minimizing makespan on a two-machine re-entrant flowshop," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 972-981, July.
  2. Viswanath Nagarajan & Maxim Sviridenko, 2009. "Tight Bounds for Permutation Flow Shop Scheduling," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 417-427, May.
  3. Allahverdi, Ali & Aldowaisan, Tariq, 2002. "New heuristics to minimize total completion time in m-machine flowshops," International Journal of Production Economics, Elsevier, vol. 77(1), pages 71-83, May.
  4. Choi, Seong-Woo & Kim, Yeong-Dae, 2009. "Minimizing total tardiness on a two-machine re-entrant flowshop," European Journal of Operational Research, Elsevier, vol. 199(2), pages 375-384, December.
  5. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 2006. "Some aspects of scatter search in the flow-shop problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 654-666, March.
  6. Ishibuchi, Hisao & Misaki, Shinta & Tanaka, Hideo, 1995. "Modified simulated annealing algorithms for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 81(2), pages 388-398, March.
  7. Allahverdi, Ali, 2003. "The two- and m-machine flowshop scheduling problems with bicriteria of makespan and mean flowtime," European Journal of Operational Research, Elsevier, vol. 147(2), pages 373-396, June.
  8. Rajendran, Chandrasekharan & Ziegler, Hans, 2003. "Scheduling to minimize the sum of weighted flowtime and weighted tardiness of jobs in a flowshop with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 149(3), pages 513-522, September.
  9. Yong Wang & Yuting Wang & Yuyan Han, 2023. "A Variant Iterated Greedy Algorithm Integrating Multiple Decoding Rules for Hybrid Blocking Flow Shop Scheduling Problem," Mathematics, MDPI, vol. 11(11), pages 1-25, May.
  10. Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2020. "Coupled task scheduling with exact delays: Literature review and models," European Journal of Operational Research, Elsevier, vol. 282(1), pages 19-39.
  11. Yi-Chun Wang & Ji-Bo Wang, 2023. "Study on Convex Resource Allocation Scheduling with a Time-Dependent Learning Effect," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
  12. Rossit, Daniel Alejandro & Tohmé, Fernando & Frutos, Mariano, 2018. "The Non-Permutation Flow-Shop scheduling problem: A literature review," Omega, Elsevier, vol. 77(C), pages 143-153.
  13. B-J Joo & Y-D Kim, 2009. "A branch-and-bound algorithm for a two-machine flowshop scheduling problem with limited waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 572-582, April.
  14. Alfaro-Fernández, Pedro & Ruiz, Rubén & Pagnozzi, Federico & Stützle, Thomas, 2020. "Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 282(3), pages 835-845.
  15. Vallada, Eva & Ruiz, Rubén, 2009. "Cooperative metaheuristics for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 193(2), pages 365-376, March.
  16. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
  17. Fang Wang & Yunqing Rao & Chaoyong Zhang & Qiuhua Tang & Liping Zhang, 2016. "Estimation of Distribution Algorithm for Energy-Efficient Scheduling in Turning Processes," Sustainability, MDPI, vol. 8(8), pages 1-20, August.
  18. Bo Liu & Ling Wang & Ying Liu & Shouyang Wang, 2011. "A unified framework for population-based metaheuristics," Annals of Operations Research, Springer, vol. 186(1), pages 231-262, June.
  19. Pagnozzi, Federico & Stützle, Thomas, 2021. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with additional constraints," Operations Research Perspectives, Elsevier, vol. 8(C).
  20. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
  21. Botta-Genoulaz, Valerie, 2000. "Hybrid flow shop scheduling with precedence constraints and time lags to minimize maximum lateness," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 101-111, March.
  22. Ciavotta, Michele & Minella, Gerardo & Ruiz, Rubén, 2013. "Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study," European Journal of Operational Research, Elsevier, vol. 227(2), pages 301-313.
  23. Lin, B.M.T. & Lu, C.Y. & Shyu, S.J. & Tsai, C.Y., 2008. "Development of new features of ant colony optimization for flowshop scheduling," International Journal of Production Economics, Elsevier, vol. 112(2), pages 742-755, April.
  24. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
  25. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
  26. Benavides, Alexander J. & Vera, Antony, 2022. "The reversibility property in a job-insertion tiebreaker for the permutational flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 407-421.
  27. Rajendran, Chandrasekharan & Ziegler, Hans, 2001. "A performance analysis of dispatching rules and a heuristic in static flowshops with missing operations of jobs," European Journal of Operational Research, Elsevier, vol. 131(3), pages 622-634, June.
  28. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
  29. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
  30. Chen-Yang Cheng & Shih-Wei Lin & Pourya Pourhejazy & Kuo-Ching Ying & Yu-Zhe Lin, 2021. "No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
  31. Li, Guo & Li, Na & Sambandam, Narayanasamy & Sethi, Suresh P. & Zhang, Faping, 2018. "Flow shop scheduling with jobs arriving at different times," International Journal of Production Economics, Elsevier, vol. 206(C), pages 250-260.
  32. Débora Ronconi, 2005. "A Branch-and-Bound Algorithm to Minimize the Makespan in a Flowshop with Blocking," Annals of Operations Research, Springer, vol. 138(1), pages 53-65, September.
  33. Hamed Hendizadeh, S. & Faramarzi, Hamidreza & Mansouri, S.Afshin & Gupta, Jatinder N.D. & Y ElMekkawy, Tarek, 2008. "Meta-heuristics for scheduling a flowline manufacturing cell with sequence dependent family setup times," International Journal of Production Economics, Elsevier, vol. 111(2), pages 593-605, February.
  34. Franzin, Alberto & Stützle, Thomas, 2023. "A landscape-based analysis of fixed temperature and simulated annealing," European Journal of Operational Research, Elsevier, vol. 304(2), pages 395-410.
  35. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
  36. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Zheng-Guo Lv & Ji-Bo Wang, 2023. "Branch-and-Bound and Heuristic Algorithms for Group Scheduling with Due-Date Assignment and Resource Allocation," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
  37. Victor Fernandez-Viagas & Luis Sanchez-Mediano & Alvaro Angulo-Cortes & David Gomez-Medina & Jose Manuel Molina-Pariente, 2022. "The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-32, September.
  38. Wang, Chao & Lim, Ming K & Zhao, Longfeng & Tseng, Ming-Lang & Chien, Chen-Fu & Lev, Benjamin, 2020. "The evolution of Omega-The International Journal of Management Science over the past 40 years: A bibliometric overview," Omega, Elsevier, vol. 93(C).
  39. Ronconi, Debora P., 2004. "A note on constructive heuristics for the flowshop problem with blocking," International Journal of Production Economics, Elsevier, vol. 87(1), pages 39-48, January.
  40. Solimanpur, Maghsud & Elmi, Atabak, 2013. "A tabu search approach for cell scheduling problem with makespan criterion," International Journal of Production Economics, Elsevier, vol. 141(2), pages 639-645.
  41. J N D Gupta & J E Schaller, 2006. "Minimizing flow time in a flow-line manufacturing cell with family setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 163-176, February.
  42. Donald Davendra & Ivan Zelinka & Magdalena Bialic-Davendra & Roman Senkerik & Roman Jasek, 2012. "Clustered enhanced differential evolution for the blocking flow shop scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 679-717, December.
  43. Rajendran, Chandrasekharan & Ziegler, Hans, 1997. "An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 103(1), pages 129-138, November.
  44. Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
  45. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
  46. Tirupati Devanath & Peeyush Mehta & Chandra, Pankaj, 2004. "Permutation Flowshop Scheduling with Earliness and Tardiness Penalties," IIMA Working Papers WP2004-07-06, Indian Institute of Management Ahmedabad, Research and Publication Department.
  47. Chang, Pei-Chann & Huang, Wei-Hsiu & Wu, Jheng-Long & Cheng, T.C.E., 2013. "A block mining and re-combination enhanced genetic algorithm for the permutation flowshop scheduling problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 45-55.
  48. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
  49. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
  50. S Afshin Mansouri & Emel Aktas, 2016. "Minimizing energy consumption and makespan in a two-machine flowshop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1382-1394, November.
  51. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
  52. Rajendran, Chandrasekharan & Holthaus, Oliver, 1999. "A comparative study of dispatching rules in dynamic flowshops and jobshops," European Journal of Operational Research, Elsevier, vol. 116(1), pages 156-170, July.
  53. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
  54. J E C Arroyo & V A Armentano, 2004. "A partial enumeration heuristic for multi-objective flowshop scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 1000-1007, September.
  55. Suliman, S. M. A., 2000. "A two-phase heuristic approach to the permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 143-152, March.
  56. Guo-Sheng Liu & Jin-Jin Li & Ying-Si Tang, 2018. "Minimizing Total Idle Energy Consumption in the Permutation Flow Shop Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-19, December.
  57. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
  58. Chen, Chuen-Lung & Vempati, Venkateswara S. & Aljaber, Nasser, 1995. "An application of genetic algorithms for flow shop problems," European Journal of Operational Research, Elsevier, vol. 80(2), pages 389-396, January.
  59. Amin-Naseri, Mohammad Reza & Beheshti-Nia, Mohammad Ali, 2009. "Hybrid flow shop scheduling with parallel batching," International Journal of Production Economics, Elsevier, vol. 117(1), pages 185-196, January.
  60. Pan, Quan-Ke & Wang, Ling & Li, Jun-Qing & Duan, Jun-Hua, 2014. "A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation," Omega, Elsevier, vol. 45(C), pages 42-56.
  61. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
  62. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2008. "Cooperative dispatching for minimizing mean flowtime in a dynamic flowshop," International Journal of Production Economics, Elsevier, vol. 113(2), pages 819-833, June.
  63. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
  64. Maria Raquel C. Costa & Jorge M. S. Valente & Jeffrey E. Schaller, 2020. "Efficient procedures for the weighted squared tardiness permutation flowshop scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 487-522, September.
  65. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
  66. Li, Xiaoping & Wang, Qian & Wu, Cheng, 2009. "Efficient composite heuristics for total flowtime minimization in permutation flow shops," Omega, Elsevier, vol. 37(1), pages 155-164, February.
  67. Xuemei Qi & Hongtao Wang & Haihong Zhu & Ji Zhang & Fulong Chen & Jie Yang, 2016. "Fast local neighborhood search algorithm for the no-wait flow shop scheduling with total flow time minimization," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4957-4972, August.
  68. Ruiz, Ruben & Stutzle, Thomas, 2008. "An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1143-1159, June.
  69. Baker, Kenneth R. & Altheimer, Dominik, 2012. "Heuristic solution methods for the stochastic flow shop problem," European Journal of Operational Research, Elsevier, vol. 216(1), pages 172-177.
  70. M. Henneberg & J.S. Neufeld, 2016. "A constructive algorithm and a simulated annealing approach for solving flowshop problems with missing operations," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3534-3550, June.
  71. Mohamadreza Dabiri & Mehdi Yazdani & Bahman Naderi & Hassan Haleh, 2022. "Modeling and solution methods for hybrid flow shop scheduling problem with job rejection," Operational Research, Springer, vol. 22(3), pages 2721-2765, July.
  72. Koulamas, Christos, 1998. "A new constructive heuristic for the flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 105(1), pages 66-71, February.
  73. Mukherjee, Saral & Chatterjee, A.K., 2006. "Applying machine based decomposition in 2-machine flow shops," European Journal of Operational Research, Elsevier, vol. 169(3), pages 723-741, March.
  74. Rajendran, Chandrasekharan & Ziegler, Hans, 2004. "Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 155(2), pages 426-438, June.
  75. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
  76. Solimanpur, M. & Vrat, Prem & Shankar, Ravi, 2004. "A heuristic to minimize makespan of cell scheduling problem," International Journal of Production Economics, Elsevier, vol. 88(3), pages 231-241, April.
  77. Shih-Wei Lin & Ching-Jung Ting & Kun-Chih Wu, 2018. "Simulated annealing with different vessel assignment strategies for the continuous berth allocation problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 740-763, December.
  78. Nearchou, A.C.Andreas C., 2004. "The effect of various operators on the genetic search for large scheduling problems," International Journal of Production Economics, Elsevier, vol. 88(2), pages 191-203, March.
  79. Rajendran, Chandrasekharan, 1995. "Heuristics for scheduling in flowshop with multiple objectives," European Journal of Operational Research, Elsevier, vol. 82(3), pages 540-555, May.
  80. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
  81. Zhang, Yi & Li, Xiaoping & Wang, Qian, 2009. "Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization," European Journal of Operational Research, Elsevier, vol. 196(3), pages 869-876, August.
  82. Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
  83. Nowicki, Eugeniusz, 1999. "The permutation flow shop with buffers: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 116(1), pages 205-219, July.
  84. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
  85. Huq, Faizul & Cutright, Kenneth & Martin, Clarence, 2004. "Employee scheduling and makespan minimization in a flow shop with multi-processor work stations: a case study," Omega, Elsevier, vol. 32(2), pages 121-129, April.
  86. J. Behnamian & S. M. T. Fatemi Ghomi, 2016. "A survey of multi-factory scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(1), pages 231-249, February.
  87. Pessoa, Luciana S. & Andrade, Carlos E., 2018. "Heuristics for a flowshop scheduling problem with stepwise job objective function," European Journal of Operational Research, Elsevier, vol. 266(3), pages 950-962.
  88. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
  89. Antonio Costa & Fulvio Antonio Cappadonna & Sergio Fichera, 2017. "A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1269-1283, August.
  90. Framinan, Jose M. & Leisten, Rainer & Ruiz-Usano, Rafael, 2002. "Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation," European Journal of Operational Research, Elsevier, vol. 141(3), pages 559-569, September.
  91. Allahverdi, Ali & Aldowaisan, Tariq, 2004. "No-wait flowshops with bicriteria of makespan and maximum lateness," European Journal of Operational Research, Elsevier, vol. 152(1), pages 132-147, January.
  92. Sioud, A. & Gagné, C., 2018. "Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 264(1), pages 66-73.
  93. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
  94. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
  95. Aldowaisan, Tariq & Allahverdi, Ali, 2004. "New heuristics for m-machine no-wait flowshop to minimize total completion time," Omega, Elsevier, vol. 32(5), pages 345-352, October.
  96. Abdeljaouad, Mohamed Amine & Bahroun, Zied & Omrane, Anissa & Fondrevelle, Julien, 2015. "Job-shop production scheduling with reverse flows," European Journal of Operational Research, Elsevier, vol. 244(1), pages 117-128.
  97. Jiang, Jianhua & Xu, Meirong & Meng, Xianqiu & Li, Keqin, 2020. "STSA: A sine Tree-Seed Algorithm for complex continuous optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
  98. Framinan, Jose M. & Perez-Gonzalez, Paz, 2015. "On heuristic solutions for the stochastic flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 413-420.
  99. Agarwal, Anurag & Colak, Selcuk & Eryarsoy, Enes, 2006. "Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach," European Journal of Operational Research, Elsevier, vol. 169(3), pages 801-815, March.
  100. O Holthaus & C Rajendran, 2005. "A fast ant-colony algorithm for single-machine scheduling to minimize the sum of weighted tardiness of jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 947-953, August.
  101. Laha, Dipak & Sarin, Subhash C., 2009. "A heuristic to minimize total flow time in permutation flow shop," Omega, Elsevier, vol. 37(3), pages 734-739, June.
  102. JC-H Pan & J-S Chen, 2003. "Minimizing makespan in re-entrant permutation flow-shops," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 642-653, June.
  103. Ruiz-Torres, Alex J. & Ho, Johnny C. & Ablanedo-Rosas, José H., 2011. "Makespan and workstation utilization minimization in a flowshop with operations flexibility," Omega, Elsevier, vol. 39(3), pages 273-282, June.
  104. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.
  105. Sachchida Nand Chaurasia & Shyam Sundar & Alok Singh, 2017. "Hybrid metaheuristic approaches for the single machine total stepwise tardiness problem with release dates," Operational Research, Springer, vol. 17(1), pages 275-295, April.
  106. Ladhari, Talel & Rakrouki, Mohamed Ali, 2009. "Heuristics and lower bounds for minimizing the total completion time in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 122(2), pages 678-691, December.
  107. Framinan, J. M. & Leisten, R., 2003. "An efficient constructive heuristic for flowtime minimisation in permutation flow shops," Omega, Elsevier, vol. 31(4), pages 311-317, August.
  108. Shabtay, Dvir & Arviv, Kfir & Stern, Helman & Edan, Yael, 2014. "A combined robot selection and scheduling problem for flow-shops with no-wait restrictions," Omega, Elsevier, vol. 43(C), pages 96-107.
  109. Zhuang Huang & Jianjun Yang, 2020. "Scheduling Optimization in Flowline Manufacturing Cell Considering Intercell Movement with Harmony Search Approach," Mathematics, MDPI, vol. 8(12), pages 1-21, December.
  110. Ding, Jian-Ya & Song, Shiji & Wu, Cheng, 2016. "Carbon-efficient scheduling of flow shops by multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 248(3), pages 758-771.
  111. Fonseca, Gabriela B. & Nogueira, Thiago H. & Ravetti, Martín Gómez, 2019. "A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 139-154.
  112. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
  113. Zhang, Liping & Tang, Qiuhua & Wu, Zhengjia & Wang, Fang, 2017. "Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible job shops," Energy, Elsevier, vol. 138(C), pages 210-227.
  114. A Janiak & M Y Kovalyov, 2008. "Scheduling jobs in a contaminated area: a model and heuristic algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 977-987, July.
  115. Shen, Jiayu & Shi, Yuanji & Shi, Jianxin & Dai, Yunzhong & Li, Wei, 2023. "An uncertain permutation flow shop predictive scheduling problem with processing interruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
  116. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
  117. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.
  118. Levorato, Mario & Figueiredo, Rosa & Frota, Yuri, 2022. "Exact solutions for the two-machine robust flow shop with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 300(1), pages 46-57.
  119. Lee, Wen-Chiung & Chung, Yu-Hsiang, 2013. "Permutation flowshop scheduling to minimize the total tardiness with learning effects," International Journal of Production Economics, Elsevier, vol. 141(1), pages 327-334.
  120. Weibo Liu & Yan Jin & Mark Price, 2017. "New scheduling algorithms and digital tool for dynamic permutation flowshop with newly arrived order," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3234-3248, June.
  121. Liu, Shi Qiang & Kozan, Erhan, 2009. "Scheduling a flow shop with combined buffer conditions," International Journal of Production Economics, Elsevier, vol. 117(2), pages 371-380, February.
  122. Wahiba Jomaa & Mansour Eddaly & Bassem Jarboui, 2021. "Variable neighborhood search algorithms for the permutation flowshop scheduling problem with the preventive maintenance," Operational Research, Springer, vol. 21(4), pages 2525-2542, December.
  123. Pablo Valledor & Alberto Gomez & Javier Puente & Isabel Fernandez, 2022. "Solving Rescheduling Problems in Dynamic Permutation Flow Shop Environments with Multiple Objectives Using the Hybrid Dynamic Non-Dominated Sorting Genetic II Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
  124. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
  125. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pasdeloup, Bastien & Meyer, Patrick, 2023. "Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1296-1330.
  126. Yu-Jun Zheng & Yi-Chen Du & Wei-Guo Sheng & Hai-Feng Ling, 2019. "Collaborative Human–UAV Search and Rescue for Missing Tourists in Nature Reserves," Interfaces, INFORMS, vol. 49(5), pages 371-383, September.
  127. Roslof, Janne & Harjunkoski, Iiro & Westerlund, Tapio & Isaksson, Johnny, 2002. "Solving a large-scale industrial scheduling problem using MILP combined with a heuristic procedure," European Journal of Operational Research, Elsevier, vol. 138(1), pages 29-42, April.
  128. Kalir, Adar A. & Sarin, Subhash C., 2001. "A near-optimal heuristic for the sequencing problem in multiple-batch flow-shops with small equal sublots," Omega, Elsevier, vol. 29(6), pages 577-584, December.
  129. Ruiz, Ruben & Maroto, Concepcion & Alcaraz, Javier, 2005. "Solving the flowshop scheduling problem with sequence dependent setup times using advanced metaheuristics," European Journal of Operational Research, Elsevier, vol. 165(1), pages 34-54, August.
  130. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
  131. Vacharapoom Benjaoran & Nashwan Dawood & Brian Hobbs, 2005. "Flowshop scheduling model for bespoke precast concrete production planning," Construction Management and Economics, Taylor & Francis Journals, vol. 23(1), pages 93-105.
  132. O Etiler & B Toklu & M Atak & J Wilson, 2004. "A genetic algorithm for flow shop scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 830-835, August.
  133. Xiaohui Zhang & Xinhua Liu & Shufeng Tang & Grzegorz Królczyk & Zhixiong Li, 2019. "Solving Scheduling Problem in a Distributed Manufacturing System Using a Discrete Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 12(17), pages 1-24, August.
  134. Sharadapriyadarshini, B. & Rajendran, Chandrasekharan, 1997. "Heuristics for scheduling in a Kanban system with dual blocking mechanisms," European Journal of Operational Research, Elsevier, vol. 103(3), pages 439-452, December.
  135. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
  136. Michał Ćwik & Jerzy Józefczyk, 2018. "Heuristic algorithms for the minmax regret flow-shop problem with interval processing times," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 215-238, March.
  137. Li, Xiaoping & Chen, Long & Xu, Haiyan & Gupta, Jatinder N.D., 2015. "Trajectory Scheduling Methods for minimizing total tardiness in a flowshop," Operations Research Perspectives, Elsevier, vol. 2(C), pages 13-23.
  138. Rios-Mercado, Roger Z. & Bard, Jonathan F., 1998. "Heuristics for the flow line problem with setup costs," European Journal of Operational Research, Elsevier, vol. 110(1), pages 76-98, October.
  139. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
  140. Cheng, Jinliang & Steiner, George & Stephenson, Paul, 2001. "A computational study with a new algorithm for the three-machine permutation flow-shop problem with release times," European Journal of Operational Research, Elsevier, vol. 130(3), pages 559-575, May.
  141. Yang-Kuei Lin & Tzu-Yueh Yin, 2022. "Generating bicriteria schedules for correlated parallel machines involving tardy jobs and weighted completion time," Annals of Operations Research, Springer, vol. 319(2), pages 1655-1688, December.
  142. Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.
  143. Cha, Young-Ho & Kim, Yeong-Dae, 2010. "Fire scheduling for planned artillery attack operations under time-dependent destruction probabilities," Omega, Elsevier, vol. 38(5), pages 383-392, October.
  144. Yunhe Wang & Xiangtao Li & Zhiqiang Ma, 2017. "A Hybrid Local Search Algorithm for the Sequence Dependent Setup Times Flowshop Scheduling Problem with Makespan Criterion," Sustainability, MDPI, vol. 9(12), pages 1-35, December.
  145. Waldherr, Stefan & Knust, Sigrid, 2017. "Decomposition algorithms for synchronous flow shop problems with additional resources and setup times," European Journal of Operational Research, Elsevier, vol. 259(3), pages 847-863.
  146. X Wang & L Tang, 2011. "Scheduling a single machine with multiple job processing ability to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(8), pages 1555-1565, August.
  147. Bailin Wang & Kai Huang & Tieke Li, 2018. "Two-stage hybrid flowshop scheduling with simultaneous processing machines," Journal of Scheduling, Springer, vol. 21(4), pages 387-411, August.
  148. Lee, Wen-Chiung & Wu, Chin-Chia & Hsu, Peng-Hsiang, 2010. "A single-machine learning effect scheduling problem with release times," Omega, Elsevier, vol. 38(1-2), pages 3-11, February.
  149. Moslehi, G. & Mirzaee, M. & Vasei, M. & Modarres, M. & Azaron, A., 2009. "Two-machine flow shop scheduling to minimize the sum of maximum earliness and tardiness," International Journal of Production Economics, Elsevier, vol. 122(2), pages 763-773, December.
  150. Martín Ravetti & Carlos Riveros & Alexandre Mendes & Mauricio Resende & Panos Pardalos, 2012. "Parallel hybrid heuristics for the permutation flow shop problem," Annals of Operations Research, Springer, vol. 199(1), pages 269-284, October.
  151. Madiha Harrabi & Olfa Belkahla Driss & Khaled Ghedira, 2021. "A hybrid evolutionary approach to job-shop scheduling with generic time lags," Journal of Scheduling, Springer, vol. 24(3), pages 329-346, June.
  152. Framinan, Jose M. & Leisten, Rainer, 2006. "A heuristic for scheduling a permutation flowshop with makespan objective subject to maximum tardiness," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 28-40, February.
  153. Franca, Paulo M. & Mendes, Alexandre & Moscato, Pablo, 2001. "A memetic algorithm for the total tardiness single machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 132(1), pages 224-242, July.
  154. Pai Liu & Xi Zhang & Zhongshun Shi & Zewen Huang, 2017. "Simulation Optimization for MRO Systems Operations," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(02), pages 1-23, April.
  155. Varadharajan, T.K. & Rajendran, Chandrasekharan, 2005. "A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 167(3), pages 772-795, December.
  156. Theodor Freiheit & Wei Li, 2017. "The effect of work content imbalance and its interaction with scheduling method on sequential flow line performance," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2791-2805, May.
  157. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
  158. Hong-Yan Sang & Quan-Ke Pan & Pei-Yong Duan & Jun-Qing Li, 2018. "An effective discrete invasive weed optimization algorithm for lot-streaming flowshop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1337-1349, August.
  159. Pritibhushan Sinha, 2012. "A random maintenance scheduling model to reduce fault diagnosis time," Annals of Operations Research, Springer, vol. 201(1), pages 441-447, December.
  160. Sung, C.S. & Kim, Hyun Ah, 2008. "A two-stage multiple-machine assembly scheduling problem for minimizing sum of completion times," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1038-1048, June.
  161. Chen, Shih-Hsin & Chen, Min-Chih, 2013. "Addressing the advantages of using ensemble probabilistic models in Estimation of Distribution Algorithms for scheduling problems," International Journal of Production Economics, Elsevier, vol. 141(1), pages 24-33.
  162. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
  163. Mostafa Khatami & Seyed Hessameddin Zegordi, 2017. "Coordinative production and maintenance scheduling problem with flexible maintenance time intervals," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 857-867, April.
  164. Mohamed Ali Rakrouki & Anis Kooli & Sabrine Chalghoumi & Talel Ladhari, 2020. "A branch-and-bound algorithm for the two-machine total completion time flowshop problem subject to release dates," Operational Research, Springer, vol. 20(1), pages 21-35, March.
  165. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
  166. Chevroton, Hugo & Kergosien, Yannick & Berghman, Lotte & Billaut, Jean-Charles, 2021. "Solving an integrated scheduling and routing problem with inventory, routing and penalty costs," European Journal of Operational Research, Elsevier, vol. 294(2), pages 571-589.
  167. Waldherr, Stefan & Knust, Sigrid & Briskorn, Dirk, 2017. "Synchronous flow shop problems: How much can we gain by leaving machines idle?," Omega, Elsevier, vol. 72(C), pages 15-24.
  168. Riane, Fouad & Artiba, Abdelhakim & E. Elmaghraby, Salah, 1998. "A hybrid three-stage flowshop problem: Efficient heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 109(2), pages 321-329, September.
  169. Logendran, Rasaratnam & Mai, Luen & Talkington, Diane, 1995. "Combined heuristics for bi-level group scheduling problems," International Journal of Production Economics, Elsevier, vol. 38(2-3), pages 133-145, March.
  170. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
  171. Angel A. Juan & Helena Ramalhinho-Lourenço & Manuel Mateo & Quim Castellà & Barry B. Barrios, 2012. "ILS-ESP: An efficient, simple, and parameter-free algorithm for solving the permutation flow-shop problem," Economics Working Papers 1319, Department of Economics and Business, Universitat Pompeu Fabra.
  172. Chia-Shin Chung & James Flynn & Walter Rom & Piotr Staliński, 2012. "A Genetic Algorithm to Minimize the Total Tardiness for M-Machine Permutation Flowshop Problems," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 8(2), pages 26-43.
  173. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
  174. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
  175. Biskup, Dirk & Herrmann, Jan & Gupta, Jatinder N.D., 2008. "Scheduling identical parallel machines to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 115(1), pages 134-142, September.
  176. Na Yin & Liying Kang, 2015. "Minimizing Makespan in Permutation Flow Shop Scheduling with Proportional Deterioration," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-12, December.
  177. Kim, Yeong-Dae & Lim, Hyeong-Gyu & Park, Moon-Won, 1996. "Search heuristics for a flowshop scheduling problem in a printed circuit board assembly process," European Journal of Operational Research, Elsevier, vol. 91(1), pages 124-143, May.
  178. Benavides, Alexander J. & Ritt, Marcus & Miralles, Cristóbal, 2014. "Flow shop scheduling with heterogeneous workers," European Journal of Operational Research, Elsevier, vol. 237(2), pages 713-720.
  179. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
  180. K Sheibani, 2010. "A fuzzy greedy heuristic for permutation flow-shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 813-818, May.
  181. Kurz, Mary E. & Askin, Ronald G., 2003. "Comparing scheduling rules for flexible flow lines," International Journal of Production Economics, Elsevier, vol. 85(3), pages 371-388, September.
  182. Jianhui Mou & Xinyu Li & Liang Gao & Wenchao Yi, 2018. "An effective L-MONG algorithm for solving multi-objective flow-shop inverse scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 789-807, April.
  183. Nour El Houda Tellache & Mourad Boudhar, 2018. "Flow shop scheduling problem with conflict graphs," Annals of Operations Research, Springer, vol. 261(1), pages 339-363, February.
  184. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
  185. Wang, Chuyang & Li, Xiaoping & Wang, Qian, 2010. "Accelerated tabu search for no-wait flowshop scheduling problem with maximum lateness criterion," European Journal of Operational Research, Elsevier, vol. 206(1), pages 64-72, October.
  186. Mohamed Amine Abdeljaoued & Nour El Houda Saadani & Zied Bahroun, 2020. "Heuristic and metaheuristic approaches for parallel machine scheduling under resource constraints," Operational Research, Springer, vol. 20(4), pages 2109-2132, December.
  187. Liu, Weibo & Jin, Yan & Price, Mark, 2017. "A new improved NEH heuristic for permutation flowshop scheduling problems," International Journal of Production Economics, Elsevier, vol. 193(C), pages 21-30.
  188. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
  189. Mukherjee, Saral & Chatterjee Ashis K, 2002. "Applying Machine Based Decomposition in 2-Machine Flow Shops," IIMA Working Papers WP2002-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
  190. Rubén Ruiz & Ali Allahverdi, 2007. "Some effective heuristics for no-wait flowshops with setup times to minimize total completion time," Annals of Operations Research, Springer, vol. 156(1), pages 143-171, December.
  191. Said Aqil & Karam Allali, 2021. "On a bi-criteria flow shop scheduling problem under constraints of blocking and sequence dependent setup time," Annals of Operations Research, Springer, vol. 296(1), pages 615-637, January.
  192. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
  193. Wu, Chin-Chia & Lee, Wen-Chiung, 2009. "A note on the total completion time problem in a permutation flowshop with a learning effect," European Journal of Operational Research, Elsevier, vol. 192(1), pages 343-347, January.
  194. Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  195. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
  196. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
  197. Lobo, Fernando G. & Bazargani, Mosab & Burke, Edmund K., 2020. "A cutoff time strategy based on the coupon collector’s problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 101-114.
  198. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
  199. Gustavo Erick Anaya Fuentes & Eva Selene Hernández Gress & Juan Carlos Seck Tuoh Mora & Joselito Medina Marín, 2018. "Solution to travelling salesman problem by clusters and a modified multi-restart iterated local search metaheuristic," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-20, August.
  200. Marcelo Seido Nagano & Adriano Seiko Komesu & Hugo Hissashi Miyata, 2019. "An evolutionary clustering search for the total tardiness blocking flow shop problem," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1843-1857, April.
  201. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
  202. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
  203. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
  204. Ribas, Imma & Companys, Ramon & Tort-Martorell, Xavier, 2011. "An iterated greedy algorithm for the flowshop scheduling problem with blocking," Omega, Elsevier, vol. 39(3), pages 293-301, June.
  205. Matin, Hossein N.Z. & Salmasi, Nasser & Shahvari, Omid, 2017. "Makespan minimization in flowshop batch processing problem with different batch compositions on machines," International Journal of Production Economics, Elsevier, vol. 193(C), pages 832-844.
  206. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
  207. M S Nagano & J V Moccellin, 2008. "Reducing mean flow time in permutation flow shop," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 939-945, July.
  208. Adam Janiak & Andrzej Kozik & Maciej Lichtenstein, 2010. "New perspectives in VLSI design automation: deterministic packing by Sequence Pair," Annals of Operations Research, Springer, vol. 179(1), pages 35-56, September.
  209. Fernando Luis Rossi & Marcelo Seido Nagano, 2022. "Beam search-based heuristics for the mixed no-idle flowshop with total flowtime criterion," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1311-1346, December.
  210. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
  211. W Q Huang & L Wang, 2006. "A local search method for permutation flow shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1248-1251, October.
  212. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
  213. Kopanos, Georgios M. & Méndez, Carlos A. & Puigjaner, Luis, 2010. "MIP-based decomposition strategies for large-scale scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical industry," European Journal of Operational Research, Elsevier, vol. 207(2), pages 644-655, December.
  214. Meenakshi Sharma & Manisha Sharma & Sameer Sharma, 2022. "Desert sparrow optimization algorithm for the bicriteria flow shop scheduling problem with sequence-independent setup time," Operational Research, Springer, vol. 22(4), pages 4353-4396, September.
  215. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
  216. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
  217. Vahid Riahi & Morteza Kazemi, 2018. "A new hybrid ant colony algorithm for scheduling of no-wait flowshop," Operational Research, Springer, vol. 18(1), pages 55-74, April.
  218. Gajpal, Yuvraj & Rajendran, Chandrasekharan, 2006. "An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops," International Journal of Production Economics, Elsevier, vol. 101(2), pages 259-272, June.
  219. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1996. "A fast tabu search algorithm for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 160-175, May.
  220. Vineet Jain & Tilak Raj, 2018. "An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1302-1314, December.
  221. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
  222. J A Vázquez-Rodríguez & G Ochoa, 2011. "On the automatic discovery of variants of the NEH procedure for flow shop scheduling using genetic programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 381-396, February.
  223. Grabowski, Jøzef & Pempera, Jaroslaw, 2007. "The permutation flow shop problem with blocking. A tabu search approach," Omega, Elsevier, vol. 35(3), pages 302-311, June.
  224. Schaller, Jeffrey E. & Gupta, Jatinder N. D. & Vakharia, Asoo J., 2000. "Scheduling a flowline manufacturing cell with sequence dependent family setup times," European Journal of Operational Research, Elsevier, vol. 125(2), pages 324-339, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.