IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v41y2013i2p383-389.html
   My bibliography  Save this article

Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm

Author

Listed:
  • Lin, Shih-Wei
  • Ying, Kuo-Ching

Abstract

The blocking flowshop scheduling problem has a strong industrial background but is under-represented in the research literature. In this study, a revised artificial immune system (RAIS) algorithm based on the features of artificial immune systems and the annealing process of simulated annealing algorithms was presented to minimize the makespan in a blocking flowshop. To validate the performance of the proposed RAIS algorithm, computational experiments and comparisons were conducted on the well-known benchmark problems of Taillard used in earlier studies. The experimental results show that the proposed RAIS algorithm outperforms the state-of-art algorithms on the same benchmark problem data set.

Suggested Citation

  • Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
  • Handle: RePEc:eee:jomega:v:41:y:2013:i:2:p:383-389
    DOI: 10.1016/j.omega.2012.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048312000801
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boysen, Nils & Fliedner, Malte, 2010. "Cross dock scheduling: Classification, literature review and research agenda," Omega, Elsevier, vol. 38(6), pages 413-422, December.
    2. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    3. Tan, K.C. & Goh, C.K. & Mamun, A.A. & Ei, E.Z., 2008. "An evolutionary artificial immune system for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 187(2), pages 371-392, June.
    4. Ribas, Imma & Companys, Ramon & Tort-Martorell, Xavier, 2011. "An iterated greedy algorithm for the flowshop scheduling problem with blocking," Omega, Elsevier, vol. 39(3), pages 293-301, June.
    5. Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
    6. Kuo-Ching Ying, 2012. "Minimising makespan for multistage hybrid flowshop scheduling problems with multiprocessor tasks by a hybrid immune algorithm," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 6(2), pages 199-215.
    7. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    8. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    9. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    10. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    11. Grabowski, Jøzef & Pempera, Jaroslaw, 2007. "The permutation flow shop problem with blocking. A tabu search approach," Omega, Elsevier, vol. 35(3), pages 302-311, June.
    12. Caraffa, Vince & Ianes, Stefano & P. Bagchi, Tapan & Sriskandarajah, Chelliah, 2001. "Minimizing makespan in a blocking flowshop using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 70(2), pages 101-115, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Quan-Ke & Wang, Ling & Li, Jun-Qing & Duan, Jun-Hua, 2014. "A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation," Omega, Elsevier, vol. 45(C), pages 42-56.
    2. Karapetyan, Daniel & Mitrovic Minic, Snezana & Malladi, Krishna T. & Punnen, Abraham P., 2015. "Satellite downlink scheduling problem: A case study," Omega, Elsevier, vol. 53(C), pages 115-123.
    3. Bautista, Joaquín & Alfaro, Rocío & Batalla, Cristina, 2015. "Modeling and solving the mixed-model sequencing problem to improve productivity," International Journal of Production Economics, Elsevier, vol. 161(C), pages 83-95.
    4. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.

    More about this item

    Keywords

    Scheduling; Blocking flowshop; Makespan;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:41:y:2013:i:2:p:383-389. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.