IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v43y1996i2p211-231.html
   My bibliography  Save this article

Cyclic scheduling in flow lines: Modeling observations, effective heuristics and a cycle time minimization procedure

Author

Listed:
  • Selcuk Karabati
  • Panagiotis Kouvelis

Abstract

In this paper we address the cyclic scheduling problem in flow lines. We develop a modeling framework and an integer programming formulation of the problem. We subsequently present exact and approximate solution procedures. The exact solution procedure is a branch‐and‐bound algorithm which uses Lagrangian and station‐based relaxations of the integer programming formulation of the problem as the lower bounding method. Our heuristic procedures show a performance superior to the available ones in the literature. Finally, we address the stability issue in cyclic scheduling, demonstrate its relationship to the work‐in‐progress inventory control of a flow line, and present a very simple procedure to generate stable schedules in flow lines. © 1996 John Wiley & Sons, Inc.

Suggested Citation

  • Selcuk Karabati & Panagiotis Kouvelis, 1996. "Cyclic scheduling in flow lines: Modeling observations, effective heuristics and a cycle time minimization procedure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 211-231, March.
  • Handle: RePEc:wly:navres:v:43:y:1996:i:2:p:211-231
    DOI: 10.1002/(SICI)1520-6750(199603)43:23.0.CO;2-D
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199603)43:23.0.CO;2-D
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199603)43:23.0.CO;2-D?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Thomas McCormick & Michael L. Pinedo & Scott Shenker & Barry Wolf, 1989. "Sequencing in an Assembly Line with Blocking to Minimize Cycle Time," Operations Research, INFORMS, vol. 37(6), pages 925-935, December.
    2. Lei Lei & Tzyh-Jong Wang, 1991. "The Minimum Common-Cycle Algorithm for Cyclic Scheduling of Two Material Handling Hoists with Time Window Constraints," Management Science, INFORMS, vol. 37(12), pages 1629-1639, December.
    3. R. A. Bowman & J. A. Muckstadt, 1993. "Stochastic Analysis of Cyclic Schedules," Operations Research, INFORMS, vol. 41(5), pages 947-958, October.
    4. Robin Roundy, 1992. "Cyclic Schedules for Job Shops with Identical Jobs," Mathematics of Operations Research, INFORMS, vol. 17(4), pages 842-865, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I.N. Kamal Abadi & Nicholas G. Hall & Chelliah Sriskandarajah, 2000. "Minimizing Cycle Time in a Blocking Flowshop," Operations Research, INFORMS, vol. 48(1), pages 177-180, February.
    2. Ada Che & Vladimir Kats & Eugene Levner, 2011. "Cyclic scheduling in robotic flowshops with bounded work‐in‐process levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 1-16, February.
    3. Lopes, Thiago Cantos & Michels, Adalberto Sato & Sikora, Celso Gustavo Stall & Molina, Rafael Gobbi & Magatão, Leandro, 2018. "Balancing and cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines," International Journal of Production Economics, Elsevier, vol. 203(C), pages 216-224.
    4. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
    5. Nouha Nouri & Talel Ladhari, 2018. "Evolutionary multiobjective optimization for the multi-machine flow shop scheduling problem under blocking," Annals of Operations Research, Springer, vol. 267(1), pages 413-430, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milind Dawande & Zhichao Feng & Ganesh Janakiraman, 2021. "On the Structure of Bottlenecks in Processes," Management Science, INFORMS, vol. 67(6), pages 3853-3870, June.
    2. Yang Bo & Milind Dawande & Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2019. "Determining Process Capacity: Intractability and Efficient Special Cases," Service Science, INFORMS, vol. 21(1), pages 139-153, January.
    3. SubaI, Corinne & Baptiste, Pierre & Niel, Eric, 2006. "Scheduling issues for environmentally responsible manufacturing: The case of hoist scheduling in an electroplating line," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 74-87, February.
    4. Smith, Kate & Palaniswami, M. & Krishnamoorthy, M., 1996. "Traditional heuristic versus Hopfield neural network approaches to a car sequencing problem," European Journal of Operational Research, Elsevier, vol. 93(2), pages 300-316, September.
    5. Elmaghraby, Salah E., 2000. "On criticality and sensitivity in activity networks," European Journal of Operational Research, Elsevier, vol. 127(2), pages 220-238, December.
    6. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    7. Scott Webster & Z. Kevin Weng, 2001. "Improving Repetitive Manufacturing Systems: Model and Insights," Operations Research, INFORMS, vol. 49(1), pages 99-106, February.
    8. Cavory, G. & Dupas, R. & Goncalves, G., 2005. "A genetic approach to solving the problem of cyclic job shop scheduling with linear constraints," European Journal of Operational Research, Elsevier, vol. 161(1), pages 73-85, February.
    9. Paul, Henrik J. & Bierwirth, Christian & Kopfer, Herbert, 2007. "A heuristic scheduling procedure for multi-item hoist production lines," International Journal of Production Economics, Elsevier, vol. 105(1), pages 54-69, January.
    10. Herbon, Avi, 2020. "An approximated solution to the constrained integrated manufacturer-buyer supply problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    11. Toly Chen, 2013. "A Systematic Cycle Time Reduction Procedure for Enhancing the Competitiveness and Sustainability of a Semiconductor Manufacturer," Sustainability, MDPI, vol. 5(11), pages 1-16, November.
    12. Kats, Vladimir & Lei, Lei & Levner, Eugene, 2008. "Minimizing the cycle time of multiple-product processing networks with a fixed operation sequence, setups, and time-window constraints," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1196-1211, June.
    13. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    14. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
    15. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    16. Zhili Zhou & Ling Li, 2009. "A solution for cyclic scheduling of multi-hoists without overlapping," Annals of Operations Research, Springer, vol. 168(1), pages 5-21, April.
    17. Sheen, Gwo-Ji & Liao, Lu-Wen, 2007. "A branch and bound algorithm for the one-machine scheduling problem with minimum and maximum time lags," European Journal of Operational Research, Elsevier, vol. 181(1), pages 102-116, August.
    18. Bolat, Ahmet, 1997. "Sequencing jobs for an automated manufacturing module with buffer," European Journal of Operational Research, Elsevier, vol. 96(3), pages 622-635, February.
    19. Jiyin Liu & Yun Jiang, 2005. "An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem," Operations Research, INFORMS, vol. 53(2), pages 313-327, April.
    20. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:43:y:1996:i:2:p:211-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.