IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v35y2007i3p302-311.html
   My bibliography  Save this article

The permutation flow shop problem with blocking. A tabu search approach

Author

Listed:
  • Grabowski, Jøzef
  • Pempera, Jaroslaw

Abstract

This paper develops a fast tabu search algorithm to minimize makespan in a flow shop problem with blocking. Some properties of the problem associated with the blocks of jobs have been presented and discussed. These properties allow us to propose a specific neighbourhood of algorithms. Also, the multimoves are used that consist in performing several moves simultaneously in a single iteration and guide the search process to more promising areas of the solutions space, where good solutions can be found. It allow us to accelerate the convergence of the algorithm. Besides, a dynamic tabu list is proposed that assists additionally to avoid being trapped at a local optimum. The proposed algorithms are empirically evaluated and found to be relatively more effective in finding better solutions than attained by the leading approaches in a much shorter time. The presented ideas can be applied in many local search procedures.

Suggested Citation

  • Grabowski, Jøzef & Pempera, Jaroslaw, 2007. "The permutation flow shop problem with blocking. A tabu search approach," Omega, Elsevier, vol. 35(3), pages 302-311, June.
  • Handle: RePEc:eee:jomega:v:35:y:2007:i:3:p:302-311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(05)00091-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    2. S. Thomas McCormick & Michael L. Pinedo & Scott Shenker & Barry Wolf, 1989. "Sequencing in an Assembly Line with Blocking to Minimize Cycle Time," Operations Research, INFORMS, vol. 37(6), pages 925-935, December.
    3. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    4. Widmer, Marino & Hertz, Alain, 1989. "A new heuristic method for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 41(2), pages 186-193, July.
    5. Ronconi, Debora P., 2004. "A note on constructive heuristics for the flowshop problem with blocking," International Journal of Production Economics, Elsevier, vol. 87(1), pages 39-48, January.
    6. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    7. I.N. Kamal Abadi & Nicholas G. Hall & Chelliah Sriskandarajah, 2000. "Minimizing Cycle Time in a Blocking Flowshop," Operations Research, INFORMS, vol. 48(1), pages 177-180, February.
    8. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1996. "A fast tabu search algorithm for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 160-175, May.
    9. Grabowski, Jozef & Pempera, Jaroslaw, 2000. "Sequencing of jobs in some production system," European Journal of Operational Research, Elsevier, vol. 125(3), pages 535-550, September.
    10. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    11. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.
    12. D P Ronconi & V A Armentano, 2001. "Lower bounding schemes for flowshops with blocking in-process," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(11), pages 1289-1297, November.
    13. Caraffa, Vince & Ianes, Stefano & P. Bagchi, Tapan & Sriskandarajah, Chelliah, 2001. "Minimizing makespan in a blocking flowshop using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 70(2), pages 101-115, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    2. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    3. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    4. Li, Xiaoping & Wang, Qian & Wu, Cheng, 2009. "Efficient composite heuristics for total flowtime minimization in permutation flow shops," Omega, Elsevier, vol. 37(1), pages 155-164, February.
    5. Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
    6. Liu, Shi Qiang & Kozan, Erhan, 2009. "Scheduling a flow shop with combined buffer conditions," International Journal of Production Economics, Elsevier, vol. 117(2), pages 371-380, February.
    7. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    8. Ansis Ozolins, 2019. "Improved bounded dynamic programming algorithm for solving the blocking flow shop problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 15-38, March.
    9. Marcelo Seido Nagano & Adriano Seiko Komesu & Hugo Hissashi Miyata, 2019. "An evolutionary clustering search for the total tardiness blocking flow shop problem," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1843-1857, April.
    10. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
    11. Bo Liu & Ling Wang & Ying Liu & Shouyang Wang, 2011. "A unified framework for population-based metaheuristics," Annals of Operations Research, Springer, vol. 186(1), pages 231-262, June.
    12. Donald Davendra & Ivan Zelinka & Magdalena Bialic-Davendra & Roman Senkerik & Roman Jasek, 2012. "Clustered enhanced differential evolution for the blocking flow shop scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 679-717, December.
    13. Jacobson, Sheldon H. & McLay, Laura A., 2009. "Applying statistical tests to empirically compare tabu search parameters for MAX 3-SATISFIABILITY: A case study," Omega, Elsevier, vol. 37(3), pages 522-534, June.
    14. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    15. Nouha Nouri & Talel Ladhari, 2018. "Evolutionary multiobjective optimization for the multi-machine flow shop scheduling problem under blocking," Annals of Operations Research, Springer, vol. 267(1), pages 413-430, August.
    16. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    17. Leung, Lawrence C. & Wong, Wai Hung & Hui, Yer Van & Wan, Yulai, 2013. "Managing third-party logistics under uncertainty: A decision scheme and managerial implications," International Journal of Production Economics, Elsevier, vol. 145(2), pages 630-644.
    18. Xiaohui Zhang & Xinhua Liu & Shufeng Tang & Grzegorz Królczyk & Zhixiong Li, 2019. "Solving Scheduling Problem in a Distributed Manufacturing System Using a Discrete Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 12(17), pages 1-24, August.
    19. Ma, Hong & Cheang, Brenda & Lim, Andrew & Zhang, Lei & Zhu, Yi, 2012. "An investigation into the vehicle routing problem with time windows and link capacity constraints," Omega, Elsevier, vol. 40(3), pages 336-347.
    20. Anken, F. & Beasley, J.E., 2012. "Corporate structure optimisation for multinational companies," Omega, Elsevier, vol. 40(2), pages 230-243, April.
    21. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    22. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
    23. Ribas, Imma & Companys, Ramon & Tort-Martorell, Xavier, 2011. "An iterated greedy algorithm for the flowshop scheduling problem with blocking," Omega, Elsevier, vol. 39(3), pages 293-301, June.
    24. Lee, Wen-Chiung & Shiau, Yau-Ren & Chen, Shiuan-Kang & Wu, Chin-Chia, 2010. "A two-machine flowshop scheduling problem with deteriorating jobs and blocking," International Journal of Production Economics, Elsevier, vol. 124(1), pages 188-197, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shi Qiang & Kozan, Erhan, 2009. "Scheduling a flow shop with combined buffer conditions," International Journal of Production Economics, Elsevier, vol. 117(2), pages 371-380, February.
    2. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    3. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    4. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
    5. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    6. Débora Ronconi, 2005. "A Branch-and-Bound Algorithm to Minimize the Makespan in a Flowshop with Blocking," Annals of Operations Research, Springer, vol. 138(1), pages 53-65, September.
    7. Marcelo Seido Nagano & Adriano Seiko Komesu & Hugo Hissashi Miyata, 2019. "An evolutionary clustering search for the total tardiness blocking flow shop problem," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1843-1857, April.
    8. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    9. Ribas, Imma & Companys, Ramon & Tort-Martorell, Xavier, 2011. "An iterated greedy algorithm for the flowshop scheduling problem with blocking," Omega, Elsevier, vol. 39(3), pages 293-301, June.
    10. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    11. Ronconi, Debora P., 2004. "A note on constructive heuristics for the flowshop problem with blocking," International Journal of Production Economics, Elsevier, vol. 87(1), pages 39-48, January.
    12. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
    13. Rajendran, Chandrasekharan & Ziegler, Hans, 2004. "Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 155(2), pages 426-438, June.
    14. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
    15. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    16. Nowicki, Eugeniusz, 1999. "The permutation flow shop with buffers: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 116(1), pages 205-219, July.
    17. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    18. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    19. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.
    20. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:35:y:2007:i:3:p:302-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.