IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v45y2014icp119-135.html
   My bibliography  Save this article

Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends

Author

Listed:
  • Yenisey, Mehmet Mutlu
  • Yagmahan, Betul

Abstract

The flow shop scheduling problem is finding a sequence given n jobs with same order at m machines according to certain performance measure(s). The job can be processed on at most one machine; meanwhile one machine can process at most one job. The most common objective for this problem is makespan. However, many real-world scheduling problems are multi-objective by nature. Over the years there have been several approaches used to deal with the multi-objective flow shop scheduling problems (MOFSP). Hence, in this study, we provide a brief literature review of the contributions to MOFSP and identify areas of opportunity for future research.

Suggested Citation

  • Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
  • Handle: RePEc:eee:jomega:v:45:y:2014:i:c:p:119-135
    DOI: 10.1016/j.omega.2013.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048313000832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2013.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J E C Arroyo & V A Armentano, 2004. "A partial enumeration heuristic for multi-objective flowshop scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 1000-1007, September.
    2. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    3. Ho, Johnny C. & Chang, Yih-Long, 1991. "A new heuristic for the n-job, M-machine flow-shop problem," European Journal of Operational Research, Elsevier, vol. 52(2), pages 194-202, May.
    4. Allahverdi, Ali, 2003. "The two- and m-machine flowshop scheduling problems with bicriteria of makespan and mean flowtime," European Journal of Operational Research, Elsevier, vol. 147(2), pages 373-396, June.
    5. Vallada, Eva & Ruiz, Rubén, 2009. "Cooperative metaheuristics for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 193(2), pages 365-376, March.
    6. Edward Ignall & Linus Schrage, 1965. "Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems," Operations Research, INFORMS, vol. 13(3), pages 400-412, June.
    7. Osman, IH & Potts, CN, 1989. "Simulated annealing for permutation flow-shop scheduling," Omega, Elsevier, vol. 17(6), pages 551-557.
    8. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    9. Rajendran, Chandrasekharan, 1995. "Heuristics for scheduling in flowshop with multiple objectives," European Journal of Operational Research, Elsevier, vol. 82(3), pages 540-555, May.
    10. Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
    11. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    12. Gupta, Jatinder N.D. & Stafford, Edward Jr., 2006. "Flowshop scheduling research after five decades," European Journal of Operational Research, Elsevier, vol. 169(3), pages 699-711, March.
    13. Sivrikaya-Serifoglu, Funda & Ulusoy, Gunduz, 1998. "A bicriteria two-machine permutation flowshop problem," European Journal of Operational Research, Elsevier, vol. 107(2), pages 414-430, June.
    14. Lin, B.M.T. & Lu, C.Y. & Shyu, S.J. & Tsai, C.Y., 2008. "Development of new features of ant colony optimization for flowshop scheduling," International Journal of Production Economics, Elsevier, vol. 112(2), pages 742-755, April.
    15. Arroyo, Jose Elias Claudio & Armentano, Vinicius Amaral, 2005. "Genetic local search for multi-objective flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 167(3), pages 717-738, December.
    16. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    17. Loukil, T. & Teghem, J. & Tuyttens, D., 2005. "Solving multi-objective production scheduling problems using metaheuristics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 42-61, February.
    18. Tseng, Fan T. & Stafford, Edward F. & Gupta, Jatinder N. D., 2004. "An empirical analysis of integer programming formulations for the permutation flowshop," Omega, Elsevier, vol. 32(4), pages 285-293, August.
    19. Ogbu, FA & Smith, DK, 1991. "Simulated annealing for the permutation flowshop problem," Omega, Elsevier, vol. 19(1), pages 64-67.
    20. Thom J. Hodgson & Russell E. King & Paul M. Stanfield, 1997. "Ready-Time Scheduling with Stochastic Service Times," Operations Research, INFORMS, vol. 45(5), pages 779-783, October.
    21. Herbert G. Campbell & Richard A. Dudek & Milton L. Smith, 1970. "A Heuristic Algorithm for the n Job, m Machine Sequencing Problem," Management Science, INFORMS, vol. 16(10), pages 630-637, June.
    22. Allouche, Mohamed Anis & Aouni, Belaïd & Martel, Jean-Marc & Loukil, Taïcir & Rebaï, Abdelwaheb, 2009. "Solving multi-criteria scheduling flow shop problem through compromise programming and satisfaction functions," European Journal of Operational Research, Elsevier, vol. 192(2), pages 460-467, January.
    23. Framinan, Jose M. & Leisten, Rainer & Ruiz-Usano, Rafael, 2002. "Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation," European Journal of Operational Research, Elsevier, vol. 141(3), pages 559-569, September.
    24. Toktas, Berkin & Azizoglu, Meral & Koksalan, Suna Kondakci, 2004. "Two-machine flow shop scheduling with two criteria: Maximum earliness and makespan," European Journal of Operational Research, Elsevier, vol. 157(2), pages 286-295, September.
    25. Chang, Pei-Chann & Hsieh, Jih-Chang & Lin, Shui-Geng, 2002. "The development of gradual-priority weighting approach for the multi-objective flowshop scheduling problem," International Journal of Production Economics, Elsevier, vol. 79(3), pages 171-183, October.
    26. Moslehi, G. & Mirzaee, M. & Vasei, M. & Modarres, M. & Azaron, A., 2009. "Two-machine flow shop scheduling to minimize the sum of maximum earliness and tardiness," International Journal of Production Economics, Elsevier, vol. 122(2), pages 763-773, December.
    27. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
    28. Framinan, Jose M. & Leisten, Rainer, 2006. "A heuristic for scheduling a permutation flowshop with makespan objective subject to maximum tardiness," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 28-40, February.
    29. T'kindt, Vincent & Monmarche, Nicolas & Tercinet, Fabrice & Laugt, Daniel, 2002. "An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 142(2), pages 250-257, October.
    30. Varadharajan, T.K. & Rajendran, Chandrasekharan, 2005. "A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 167(3), pages 772-795, December.
    31. Geiger, Martin Josef, 2007. "On operators and search space topology in multi-objective flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 181(1), pages 195-206, August.
    32. Lemesre, J. & Dhaenens, C. & Talbi, E.G., 2007. "An exact parallel method for a bi-objective permutation flowshop problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1641-1655, March.
    33. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    34. Onwubolu, Godfrey & Davendra, Donald, 2006. "Scheduling flow shops using differential evolution algorithm," European Journal of Operational Research, Elsevier, vol. 171(2), pages 674-692, June.
    35. Neppalli, Venkata Ranga & Chen, Chuen-Lung & Gupta, Jatinder N. D., 1996. "Genetic algorithms for the two-stage bicriteria flowshop problem," European Journal of Operational Research, Elsevier, vol. 95(2), pages 356-373, December.
    36. Richard L. Daniels & Robert J. Chambers, 1990. "Multiobjective flow‐shop scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(6), pages 981-995, December.
    37. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
    38. Jaszkiewicz, Andrzej, 2002. "Genetic local search for multi-objective combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 137(1), pages 50-71, February.
    39. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    40. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    41. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rossit, Daniel Alejandro & Tohmé, Fernando & Frutos, Mariano, 2018. "The Non-Permutation Flow-Shop scheduling problem: A literature review," Omega, Elsevier, vol. 77(C), pages 143-153.
    2. Guohua Fang & Yuxue Guo & Xin Wen & Xiaomin Fu & Xiaohui Lei & Yu Tian & Ting Wang, 2018. "Multi-Objective Differential Evolution-Chaos Shuffled Frog Leaping Algorithm for Water Resources System Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3835-3852, September.
    3. Alvarez-Meaza, Izaskun & Zarrabeitia-Bilbao, Enara & Rio-Belver, Rosa-María & Garechana-Anacabe, Gaizka, 2021. "Green scheduling to achieve green manufacturing: Pursuing a research agenda by mapping science," Technology in Society, Elsevier, vol. 67(C).
    4. Victor Fernandez-Viagas & Luis Sanchez-Mediano & Alvaro Angulo-Cortes & David Gomez-Medina & Jose Manuel Molina-Pariente, 2022. "The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-32, September.
    5. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 0. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    6. S Afshin Mansouri & Emel Aktas, 2016. "Minimizing energy consumption and makespan in a two-machine flowshop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1382-1394, November.
    7. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
    8. Yung-Chia Chang & Kuei-Hu Chang & Ching-Ping Zheng, 2022. "Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards," Mathematics, MDPI, vol. 10(13), pages 1-21, July.
    9. Abdelhamid Boudjelida, 2019. "On the robustness of joint production and maintenance scheduling in presence of uncertainties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1515-1530, April.
    10. Foumani, Mehdi & Smith-Miles, Kate, 2019. "The impact of various carbon reduction policies on green flowshop scheduling," Applied Energy, Elsevier, vol. 249(C), pages 300-315.
    11. He, Li-Jun & Ju, Xue-Wei & Zhang, Wei-Bo, 2018. "A fitness assignment strategy based on the grey and entropy parallel analysis and its application to MOEAAuthor-Name: Zhu, Guang-Yu," European Journal of Operational Research, Elsevier, vol. 265(3), pages 813-828.
    12. Juliana Castaneda & Xabier A. Martin & Majsa Ammouriova & Javier Panadero & Angel A. Juan, 2022. "A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    13. Hong-Yan Sang & Quan-Ke Pan & Pei-Yong Duan & Jun-Qing Li, 2018. "An effective discrete invasive weed optimization algorithm for lot-streaming flowshop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1337-1349, August.
    14. Thu-Ba T. Nguyen & Appa Iyer Sivakumar & Stephen C. Graves, 2017. "Scheduling rules to achieve lead-time targets in outpatient appointment systems," Health Care Management Science, Springer, vol. 20(4), pages 578-589, December.
    15. Karapetyan, Daniel & Mitrovic Minic, Snezana & Malladi, Krishna T. & Punnen, Abraham P., 2015. "Satellite downlink scheduling problem: A case study," Omega, Elsevier, vol. 53(C), pages 115-123.
    16. S. S. Panwalkar & Christos Koulamas, 2019. "The evolution of schematic representations of flow shop scheduling problems," Journal of Scheduling, Springer, vol. 22(4), pages 379-391, August.
    17. Said Aqil & Karam Allali, 2021. "On a bi-criteria flow shop scheduling problem under constraints of blocking and sequence dependent setup time," Annals of Operations Research, Springer, vol. 296(1), pages 615-637, January.
    18. Chen, Wenchong & Gong, Xuejian & Rahman, Humyun Fuad & Liu, Hongwei & Qi, Ershi, 2021. "Real-time order acceptance and scheduling for data-enabled permutation flow shops: Bilevel interactive optimization with nonlinear integer programming," Omega, Elsevier, vol. 105(C).
    19. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
    20. Javad Seif & Mohammad Dehghanimohammadabadi & Andrew Junfang Yu, 2020. "Integrated preventive maintenance and flow shop scheduling under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 852-887, December.
    21. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    22. Meenakshi Sharma & Manisha Sharma & Sameer Sharma, 2022. "Desert sparrow optimization algorithm for the bicriteria flow shop scheduling problem with sequence-independent setup time," Operational Research, Springer, vol. 22(4), pages 4353-4396, September.
    23. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 2020. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 40(2), pages 547-569, August.
    24. Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    2. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    3. Ciavotta, Michele & Minella, Gerardo & Ruiz, Rubén, 2013. "Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study," European Journal of Operational Research, Elsevier, vol. 227(2), pages 301-313.
    4. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    5. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
    6. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    7. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    8. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
    9. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    10. Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
    11. Varadharajan, T.K. & Rajendran, Chandrasekharan, 2005. "A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 167(3), pages 772-795, December.
    12. Vallada, Eva & Ruiz, Rubén, 2009. "Cooperative metaheuristics for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 193(2), pages 365-376, March.
    13. K Sheibani, 2010. "A fuzzy greedy heuristic for permutation flow-shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 813-818, May.
    14. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    15. Allahverdi, Ali, 2003. "The two- and m-machine flowshop scheduling problems with bicriteria of makespan and mean flowtime," European Journal of Operational Research, Elsevier, vol. 147(2), pages 373-396, June.
    16. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    17. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    18. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    19. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
    20. Ruiz-Torres, Alex J. & Ho, Johnny C. & Ablanedo-Rosas, José H., 2011. "Makespan and workstation utilization minimization in a flowshop with operations flexibility," Omega, Elsevier, vol. 39(3), pages 273-282, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:45:y:2014:i:c:p:119-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.