IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v167y2005i3p717-738.html
   My bibliography  Save this article

Genetic local search for multi-objective flowshop scheduling problems

Author

Listed:
  • Arroyo, Jose Elias Claudio
  • Armentano, Vinicius Amaral

Abstract

No abstract is available for this item.

Suggested Citation

  • Arroyo, Jose Elias Claudio & Armentano, Vinicius Amaral, 2005. "Genetic local search for multi-objective flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 167(3), pages 717-738, December.
  • Handle: RePEc:eee:ejores:v:167:y:2005:i:3:p:717-738
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00474-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J E C Arroyo & V A Armentano, 2004. "A partial enumeration heuristic for multi-objective flowshop scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 1000-1007, September.
    2. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    3. Fry, TD & Armstrong, RD & Lewis, H, 1989. "A framework for single machine multiple objective sequencing research," Omega, Elsevier, vol. 17(6), pages 595-607.
    4. Nagar, Amit & Haddock, Jorge & Heragu, Sunderesh, 1995. "Multiple and bicriteria scheduling: A literature survey," European Journal of Operational Research, Elsevier, vol. 81(1), pages 88-104, February.
    5. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    6. Rajendran, Chandrasekharan, 1995. "Heuristics for scheduling in flowshop with multiple objectives," European Journal of Operational Research, Elsevier, vol. 82(3), pages 540-555, May.
    7. Dileepan, P & Sen, T, 1988. "Bicriterion static scheduling research for a single machine," Omega, Elsevier, vol. 16(1), pages 53-59.
    8. Sayin, Serpil & Karabati, Selcuk, 1999. "A bicriteria approach to the two-machine flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 113(2), pages 435-449, March.
    9. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1996. "A fast tabu search algorithm for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 160-175, May.
    10. Sivrikaya-Serifoglu, Funda & Ulusoy, Gunduz, 1998. "A bicriteria two-machine permutation flowshop problem," European Journal of Operational Research, Elsevier, vol. 107(2), pages 414-430, June.
    11. Gupta, Jatinder N. D. & Neppalli, Venkata R. & Werner, Frank, 2001. "Minimizing total flow time in a two-machine flowshop problem with minimum makespan," International Journal of Production Economics, Elsevier, vol. 69(3), pages 323-338, February.
    12. Jaszkiewicz, Andrzej, 2002. "Genetic local search for multi-objective combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 137(1), pages 50-71, February.
    13. Jones, D. F. & Mirrazavi, S. K. & Tamiz, M., 2002. "Multi-objective meta-heuristics: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 137(1), pages 1-9, February.
    14. T'kindt, V. & Billaut, J-C. & Proust, C., 2001. "Solving a bicriteria scheduling problem on unrelated parallel machines occurring in the glass bottle industry," European Journal of Operational Research, Elsevier, vol. 135(1), pages 42-49, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciavotta, Michele & Minella, Gerardo & Ruiz, Rubén, 2013. "Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study," European Journal of Operational Research, Elsevier, vol. 227(2), pages 301-313.
    2. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    3. Guo, Xin & Wu, Jianjun & Sun, Huijun & Yang, Xin & Jin, Jian Gang & Wang, David Z.W., 2020. "Scheduling synchronization in urban rail transit networks: Trade-offs between transfer passenger and last train operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 463-490.
    4. Adrian Kampa & Iwona Paprocka, 2021. "Analysis of Energy Efficient Scheduling of the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Shutdown Times," Energies, MDPI, vol. 14(21), pages 1-25, November.
    5. Tadashi Yamada & Bona Frazila Russ & Jun Castro & Eiichi Taniguchi, 2009. "Designing Multimodal Freight Transport Networks: A Heuristic Approach and Applications," Transportation Science, INFORMS, vol. 43(2), pages 129-143, May.
    6. Chia-Shin Chung & James Flynn & Walter Rom & Piotr Staliński, 2012. "A Genetic Algorithm to Minimize the Total Tardiness for M-Machine Permutation Flowshop Problems," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 8(2), pages 26-43.
    7. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    8. Ławrynowicz Anna, 2011. "Genetic Algorithms for Solving Scheduling Problems in Manufacturing Systems," Foundations of Management, Sciendo, vol. 3(2), pages 7-26, January.
    9. David Conradie & Leilani Morison & Johan Joubert, 2008. "Scheduling at coal handling facilities using Simulated Annealing," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 277-293, October.
    10. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    11. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    12. Yu, Yang & Tang, Jiafu & Gong, Jun & Yin, Yong & Kaku, Ikou, 2014. "Mathematical analysis and solutions for multi-objective line-cell conversion problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 774-786.
    13. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.
    14. Hu, Mengqi & Weir, Jeffery D. & Wu, Teresa, 2012. "Decentralized operation strategies for an integrated building energy system using a memetic algorithm," European Journal of Operational Research, Elsevier, vol. 217(1), pages 185-197.
    15. Jianhui Mou & Xinyu Li & Liang Gao & Wenchao Yi, 2018. "An effective L-MONG algorithm for solving multi-objective flow-shop inverse scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 789-807, April.
    16. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    2. T'kindt, Vincent & Monmarche, Nicolas & Tercinet, Fabrice & Laugt, Daniel, 2002. "An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 142(2), pages 250-257, October.
    3. Framinan, Jose M. & Leisten, Rainer & Ruiz-Usano, Rafael, 2002. "Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation," European Journal of Operational Research, Elsevier, vol. 141(3), pages 559-569, September.
    4. Lemesre, J. & Dhaenens, C. & Talbi, E.G., 2007. "An exact parallel method for a bi-objective permutation flowshop problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1641-1655, March.
    5. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    6. Hesaraki, Alireza F. & Dellaert, Nico P. & de Kok, Ton, 2019. "Generating outpatient chemotherapy appointment templates with balanced flowtime and makespan," European Journal of Operational Research, Elsevier, vol. 275(1), pages 304-318.
    7. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    8. Sivrikaya-Serifoglu, Funda & Ulusoy, Gunduz, 1998. "A bicriteria two-machine permutation flowshop problem," European Journal of Operational Research, Elsevier, vol. 107(2), pages 414-430, June.
    9. Toktas, Berkin & Azizoglu, Meral & Koksalan, Suna Kondakci, 2004. "Two-machine flow shop scheduling with two criteria: Maximum earliness and makespan," European Journal of Operational Research, Elsevier, vol. 157(2), pages 286-295, September.
    10. Allahverdi, Ali, 2003. "The two- and m-machine flowshop scheduling problems with bicriteria of makespan and mean flowtime," European Journal of Operational Research, Elsevier, vol. 147(2), pages 373-396, June.
    11. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.
    12. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.
    13. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    14. Rajendran, Chandrasekharan & Ziegler, Hans, 2004. "Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 155(2), pages 426-438, June.
    15. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    16. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 2006. "Some aspects of scatter search in the flow-shop problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 654-666, March.
    17. Ciavotta, Michele & Minella, Gerardo & Ruiz, Rubén, 2013. "Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study," European Journal of Operational Research, Elsevier, vol. 227(2), pages 301-313.
    18. T'kindt, V. & Billaut, J-C. & Proust, C., 2001. "Solving a bicriteria scheduling problem on unrelated parallel machines occurring in the glass bottle industry," European Journal of Operational Research, Elsevier, vol. 135(1), pages 42-49, November.
    19. J E C Arroyo & V A Armentano, 2004. "A partial enumeration heuristic for multi-objective flowshop scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 1000-1007, September.
    20. Sayin, Serpil & Karabati, Selcuk, 1999. "A bicriteria approach to the two-machine flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 113(2), pages 435-449, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:167:y:2005:i:3:p:717-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.