IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v32y2004i4p285-293.html
   My bibliography  Save this article

An empirical analysis of integer programming formulations for the permutation flowshop

Author

Listed:
  • Tseng, Fan T.
  • Stafford, Edward F.
  • Gupta, Jatinder N. D.

Abstract

An empirical analysis was conducted to assess the relative effectiveness of four integer programming models for the regular permutation flowshop problem. Each of these models was used to solve a set of 60 flowshop problems. Analysis of the resultant computer solution times for each model indicated that the two assignment problem based models solved these problem instances in significantly less computer time than either of the two dichotomous constraints based models. Further, these computer solution time differences increased dramatically with increased numbers of jobs and machines in the flowshop problem. These results contradict Pan's conclusion that a variant of Manne's dichotomous constraints approach was superior to the assignment problem approaches of Wagner and Wilson because the Manne model required less than half of the binary integer variables required by the assignment problem based models.

Suggested Citation

  • Tseng, Fan T. & Stafford, Edward F. & Gupta, Jatinder N. D., 2004. "An empirical analysis of integer programming formulations for the permutation flowshop," Omega, Elsevier, vol. 32(4), pages 285-293, August.
  • Handle: RePEc:eee:jomega:v:32:y:2004:i:4:p:285-293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(03)00152-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stafford, Edward F. & Tseng, Fan T., 2002. "Two models for a family of flowshop sequencing problems," European Journal of Operational Research, Elsevier, vol. 142(2), pages 282-293, October.
    2. Edward Ignall & Linus Schrage, 1965. "Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems," Operations Research, INFORMS, vol. 13(3), pages 400-412, June.
    3. Alan S. Manne, 1960. "On the Job-Shop Scheduling Problem," Operations Research, INFORMS, vol. 8(2), pages 219-223, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    2. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    3. Mostafa Khatami & Seyed Hessameddin Zegordi, 2017. "Coordinative production and maintenance scheduling problem with flexible maintenance time intervals," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 857-867, April.
    4. W Q Huang & L Wang, 2006. "A local search method for permutation flow shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1248-1251, October.
    5. Vallada, Eva & Ruiz, Rubén, 2009. "Cooperative metaheuristics for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 193(2), pages 365-376, March.
    6. Branislav Micieta & Jolanta Staszewska & Matej Kovalsky & Martin Krajcovic & Vladimira Binasova & Ladislav Papanek & Ivan Antoniuk, 2021. "Innovative System for Scheduling Production Using a Combination of Parametric Simulation Models," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    7. Tamás Hajba & Zoltán Horváth, 2013. "New effective MILP models for PFSPs arising from real applications," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(4), pages 729-744, December.
    8. Gupta, Jatinder N.D. & Stafford, Edward Jr., 2006. "Flowshop scheduling research after five decades," European Journal of Operational Research, Elsevier, vol. 169(3), pages 699-711, March.
    9. Levorato, Mario & Figueiredo, Rosa & Frota, Yuri, 2022. "Exact solutions for the two-machine robust flow shop with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 300(1), pages 46-57.
    10. Tamás Hajba & Zoltán Horváth, 2015. "MILP models for the optimization of real production lines," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(4), pages 899-912, December.
    11. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    12. Martin, Clarence H, 2009. "A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streaming," Omega, Elsevier, vol. 37(1), pages 126-137, February.
    13. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    2. F T Tseng & E F Stafford, 2008. "New MILP models for the permutation flowshop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1373-1386, October.
    3. E F Stafford & F T Tseng & J N D Gupta, 2005. "Comparative evaluation of MILP flowshop models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(1), pages 88-101, January.
    4. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    5. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    6. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    7. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
    8. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    9. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    10. B-J Joo & Y-D Kim, 2009. "A branch-and-bound algorithm for a two-machine flowshop scheduling problem with limited waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 572-582, April.
    11. Yen-Shing Tsai & Bertrand M. T. Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
    12. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    13. D Bai & L Tang, 2010. "New heuristics for flow shop problem to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1032-1040, June.
    14. Bentao Su & Naiming Xie, 2020. "Single workgroup scheduling problem with variable processing personnel," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 671-684, June.
    15. S Yanai & T Fujie, 2006. "A three-machine permutation flow-shop problem with minimum makespan on the second machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 460-468, April.
    16. Julia Lange & Frank Werner, 2018. "Approaches to modeling train scheduling problems as job-shop problems with blocking constraints," Journal of Scheduling, Springer, vol. 21(2), pages 191-207, April.
    17. J. A. Hoogeveen & T. Kawaguchi, 1999. "Minimizing Total Completion Time in a Two-Machine Flowshop: Analysis of Special Cases," Mathematics of Operations Research, INFORMS, vol. 24(4), pages 887-910, November.
    18. Baptiste, Pierre, 2006. "Stochastic algorithms: Using the worst to reach the best," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 41-51, February.
    19. Ruiz, Ruben & Stutzle, Thomas, 2008. "An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1143-1159, June.
    20. Ishibuchi, Hisao & Misaki, Shinta & Tanaka, Hideo, 1995. "Modified simulated annealing algorithms for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 81(2), pages 388-398, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:32:y:2004:i:4:p:285-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.